Machine Learning CMPU 395
Assignment 3: Support Vector Machines

1 Task

The task is to build a Support Vector Machine for classification. You will
make use of a library routine to solve the convex optimization problem which
emerges in the dual formulation of the support vector machine. You need to
write code for structuring the data so that the library routine can find the
maximal-margin solution, and code for transforming this solution into a classifier
which can process new data. You should be able to re-use some code from the
last assignment, both for generating random data and for plotting the decision
boundary.

Minimum requirement is that you produce a plot of a linear decision bound-
ary, including the margins. For highest grade you should explore different ker-
nels and/or what happens when you use slack variables.

2 Theory

The idea is to build a classifier which first makes an (optional) transformation
of the input data, and then a linear separation where the decision boundary is
placed to give maximal margins to the available data points. The location of
the decision boundary is given by the weights (&) and the bias (b) as usual, so
the problem is to find the values for « and b which maximizes the margin, i.e.
the distance to any datapoint.
The primal formulation of this optimization problem can be stated mathe-
matically like this:
wmin | 1)
w,b

under the constraints
ti(wh - p(#)+b)>1 Vi (2)

where we have used the following notation:

w Weight vector defining the separating hyperplane
b Bias for the hyperplane

T; The ith datapoint

t; Target class (—1 or 1) for datapoint i

@(...) Optional transformation of the input data

The constraints (2) enforce that all datapoints are not only correctly classi-
fied, but also that they stay clear of the decision boundary by a certain margin.



Solving this optimization problem results in values for w and b which makes it
possible to classify a new datapoint £* using this indicator function:

ind(#*) = @7 - p(F*) + b (3)

If the indicator returns a positive value, we say that £* belongs to class 1, if
it gives a negative value, we conclude that the class is —1. All the training data
should have indicator values above 1 or below —1, since the interval between
—1 and 1 constitutes the margin.

The bias variable, b, can be eliminated by incorporating it in the weight
vector W as usual. Here we can let the ¢(...) function append the necessary
constant component, typically the value 1. Note that by using this trick we are
actually slightly modifying the problem, since we are now also incorporating
the bias value in the cost function (||@||). In practice, this will not make much
difference, and we will use this “bias free” version from here on.

2.1 Dual Formulation

The optimization problem can be transformed into a different form, called the
dual problem which has some computational advantages. In particular, it makes
it possible to use the kernel trick, thereby eliminating the need for evaluating
the ¢(...) function directly. This allows us to use transformations into very
high-dimensional spaces without the penalty of excessive computational costs.
The dual form of the problem is to find the values «; which minimizes:

fZZala]tt K(Zs, Z5) ZO” (4)

subject to the constraints

The function K(&;, Z;) is called a kernel function and computes the scalar
value corresponding to ¢(Z;) - ¢(Z;). This is, however, normally done implicitly,
i.e., without actually computing the two vectors and taking their scalar product
(see section 2.4).

The indicator function now takes the form:

ind(Z* Zoz (T, Ty) (6)

For normal data sets, only a handful of the &’s will be non-zero. Most of the
terms in the indicator function will therefore be zero, and since this is known
beforehand its evaluation is normally very efficient.



2.2 Matrix Formulation

The dual problem can be expressed in a more compact form using vectors and
matrices: find the vector & which minimizes

1 - -
id'TPd' —a-1 where @ > 0 (7)

T denotes a vector where all elements are one. Correspondingly, 0 is a vector
with all zeros. We have also introduced the matrix P, with these elements:

In fact, this is a standard form for formulating quadratic optimization prob-
lems with linear constraints. This is a well known class of optimization problems
where efficient solving algorithms are available.

2.3 Adding Slack Variables

The above method will fail if the training data are not linearly separable. In
many cases, especially when the data contain some sort of noise, it is desirable
to allow a few datapoints to be misclassified if it results in a substantially wider
margin. This is where the method of slack variables comes in.

Instead of requiring that every datapoint is on the right side of the margin
(equation 2) we will now allow for mistakes, quantified by variables &; (one for
each datapoint). These are called slack variables. The constraints will now be

ti(@’ - o(7i) 21-& Vi (9)

(Remember that we have already eliminated b from (2) by including it as a
weight).

To make sense, we must ensure that the slack variables do not become un-
necessarily large. This is easily achieved by adding a penalty term to the cost
function, such that large £ values will be penalized:

min ||| + C Y & (10)
W€ p

The new parameter C sets the relative importance of avoiding slack versus
getting a wider margin. This has to be selected by the user, based on the
character of the data. Noisy data typically deserve a low C value, allowing for
more slack, since individual datapoints in strange locations should not be taken
too seriously.

Fortunately, the dual formulation of the problem need only a slight modifi-
cation to incorporate the slack variables. In fact, we only need to add an extra
set of constraints to (5):

;>0 Vi and o <C Wi (11)

Equation (4) stays the same.



2.4 Selection of Kernel Function

One of the great advantages to support vector machines is that they are not
restricted to linear separation. By transforming the input data non-linearly to
a high-dimensional space, more complex decision boundaries can be utilized.
In the dual formulation, these transformed data points ¢(&;) always appear in
pairs, and the only thing needed is the scalar product between the pair. This
makes it possible to use what is often referred to as the kernel trick, i.e. we do
not actually have to make the data transformation but, instead, we use a kernel
function which directly returns the scalar product ¢(Z;) - ¢(Z;).
Here are the most commonly used kernel functions:

e Linear kernel
K&, 9) =27 -5+1

This kernel simply returns the scalar product between the two points.
This results in a linear separation. Note the addition of 1 which comes
from the elimination of the bias (b) by appending a constant element 1 to
the data, resulting in an extra term 1 x 1 to the scalar product.

e Polynomial kernels

K(,5) = @ g+ 1)7

This kernel allows for curved decision boundaries. The exponent p (a
positive integer) controls the degree of the polynomials. p = 2 will make
quadratic shapes (ellipses, parabolas, hyperbolas). Setting p = 3 or higher
will result in more complex shapes.

e Radial Basis Function kernels

@F=?

K:(‘/fa :'j) =e 2’

This kernel uses the explicit difference between the two datapoints, and
often results in very good boundaries. The parameter ¢ can be used to
control the smoothness of the boundary.

e Sigmoid kernels

K(Z,7) = tanh(kzZT - 7 — 0)

This is yet another possible non-linear kernel. Parameters k and § need
to be tuned to get best performance.



3 Implementation

We will make use of a Python package for convex optimization! called cvxopt.
In particular, we will call the function gp to solve our quadratic optimization
problem. The cvxopt package relies on its own implementation of matrices so
we must convert numpy arrays to cvxopt matrices.

Start by importing qp and matrix from cvxopt like this:

from cvxopt.solvers import gp
from cvxopt.base import matrix

matrix is a function which takes anything that can be interpreted as a
matrix, for example a numpy array or an ordinary Python list of lists, and
converts it into a cvxopt matrix which can be passed as a parameter to gp.

The call to qp can look like this:

r = gp(matrix(P), matrix(q), matrix(G), matrix(h))
alpha = list (r[’x’])

This will find the & which minimizes
1 -
3 A'Pa+q'a  while GA < h (12)

Here, P and G are matrices, while ¢ and h are vectors.

As you can see, this is very similar to the problem we have. This is no
coincidence, because we have formulated the problem in a standard way. To use
gp for our problem we only need to build the necessary vectors and matrices;
then gp will give us the optimal a’s.

3.1 Things to implement
You will have to write code for:

e A suitable kernel function

The kernel function takes two data points as arguments and returns a
“scalar product-like” similarity measure; a scalar value. Start with an
ordinary scalar product. Do not forget that you need to add 1 to the
output, representing the extra “always-one” component.

e Build the P matrix from a given set of data points

From the theory section we know that the P matrix should have the
elements
Py j = titK(%3, 75)

Indices 7 and j run over all the data points. Thus, if you have N data
points, P should be an N x N matrix.

LQuadratic problems are a special case of convex problems.




e Build the ¢ vector, G matrix, and h vector

These vectors and matrices do not hold any actual data. Still, they need
to be set up properly so that gp solves the right problem.

By matching our problem (equation 7) with what gt solves (equation 12)
we can see that ¢ should be a N long vector containing only the number
—1. Similarly, we realize that A must be a vector with all zeros.

Note that the greater-than relation in (7) has to be made to match the
less-than relation in (12). This can be achieved by creating a G matrix
which has —1 in the diagonal and zero everywhere else (check this!).

o Call gp

Make the call to qp as indicated in the code sample above. gp returns a
dictionary data structure; this is why we must must use the string *x’ as
an index to pick out the actual « values.

e Pick out the non-zero o values

If everything else is correct, only a few of the « values will be non-zero.
Since we are dealing with floating point values, however, those that are
supposed to be zero will in reality only be approximately zero. Therefore,
use a low threshold (107° should work fine) to determine which are to be
regarded as non-zero.

You need to save the non-zero «;’s along with the corresponding data
points (#;) in a separate data structure, for instance a list.

e Implement the indicator function

Implement the indicator function (equation 6) which uses the non-zero
«;’s together with their &;’s to classify new points.

4 Data Generation

You should be able to re-use the code you wrote for the last assignment to
generate suitable test data. Create two sets of two-dimensional data points.
Use target values 1 for one set and —1 for the other. Concatenate the two sets
together to form a single set, and do the same thing for the target values.

5 Plotting the Decision Boundary

We want to plot the data points together with the decision boundary, much like
what we did in assignment 2. You will, again, use the contour function from
the pylab package to plot the decision boundary. This time, however, you will
have to build up the matrix containing the value from the indicator function for
a grid covering suitable x and y values. Note that there is no need to do the
reshaping-magic that took place in assignment 2; you can simply loop through



the = and y ranges and call your indicator function for each z,y pair, storing
the result in a suitably sized matrix.

It is interesting to see, not only the decision boundary, but also the margins.
The decision boundary is where the indicator function changes sign, i.e. where
it is zero. The margins correspond to the locations where the indicator function
is between —1 and 1.

By modifying your call to the contour function like this, you will see both
the decision boundary (in black) and the margin (red and blue):

pylab.contour (xrange, yrange, grid,
(-1.0, 0.0, 1.0),
colors=('red’, ’black’, ’blue’),
linewidths=(1, 3, 1))

If everything is correct, the margins should touch some of the datapoints.
These are the support vectors, and should correspond to datapoints with non-
zero a’s. You may want to plot datapoints with non-zero o’s using a separate
kind of marker to visualize this.

6 Running and Reporting

Once you have the program running, there are a number of things you can
explore. Remember that support vector machines are especially good at finding
a reasonable decision boundary from small sets of training data.

If you implement some of the non-linear kernels you should be able to classify
very hard datasets. The non-linear kernels have parameters; explore how they
influence the decision boundary.

Slack variables can quite easily be incorporated by adding the extra con-
traints (equation 11). This means that you have to extend the matrix G and
vector I with rows corresponding to the «; < C constraints. Explore the role
of parameter C.

Make sure that you write down the relevant parameter values used when
preparing the report. The minimal requirement is that you can show how a
linear kernel separates data. For highest grade you should implement several
kernels and explore the effect of their parameters. Alternatively, you can imple-
ment the slack variables and explore the effect of using different values for C.
If you implement both, you will have a really powerful classifier.




