Max of a List

Implement the function `max-item` which returns the biggest number in a list of numbers
Data and Contract

Data: `list-of-num`, obviously

Contract:

```plaintext
; max-item : list-of-num -> num
```
Examples

(check-expect (max-item '(2 7 5)) 7)
Examples

(check-expect (max-item '(2 7 5)) 7)
(check-expect (max-item empty) ...)

Examples

(check-expect (max-item '(2 7 5)) 7)
(check-expect (max-item empty) ...)

Problem: max-item makes no sense on an empty list
Data and Contract, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either
; - (cons num empty)
; - (cons num nonempty-list-of-num)
Data: \texttt{nonempty-list-of-num}

; A nonempty-list-of-num is either
; - (\texttt{cons num empty})
; - (\texttt{cons num nonempty-list-of-num})

Contract:

; \texttt{max-item : nonempty-list-of-num \rightarrow num}
Examples, Again

(check-expect (max-item '(2 7 5)) 7)
(check-expect (max-item '(2)) 2)
Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either
; - (cons num empty)
; - (cons num nonempty-list-of-num)
Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either
; - (cons num empty)
; - (cons num nonempty-list-of-num)

(define (max-item nel)
 (cond
 [(empty? (rest nel)) ... (first nel) ...]
 [else
 ... (first nel)
 ... (max-item (rest nel)) ...]])
(define (max-item nel)
 (cond
 [(empty? (rest nel)) (first nel)]
 [else
 (cond
 [(> (first nel) (max-item (rest nel)))
 (first nel)]
 [else
 (max-item (rest nel))])))
Test

(check-expect (max-item '(2)) 2)

works fine
Test

(check-expect (max-item '(2)) 2)
works fine

(check-expect
 (max-item '(1 2 3 4 5 6 7 8 9 10))
10)
works fine
Test

(check-expect (max-item '(2)) 2)
works fine

(check-expect
 (max-item '(1 2 3 4 5 6 7 8 9 10))
10)
works fine

(check-expect
 (max-item '(1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30))
30)
answer never appears!
The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way too long
The Speed of max-item

Somewhere around 20 items, the `max-item` function starts to take way too long

Even if you buy a computer that’s 10 times faster, the problem shows up with about 23 items...
The Speed of max-item

Somewhere around 20 items, the **max-item** function starts to take way too long

Even if you buy a computer that’s 10 times faster, the problem shows up with about 23 items...

How long does a program take to run?
Counting Steps

How long does

\[(+ \ 1 \ (* \ 6 \ 7))\]

take to execute?
Counting Steps

How long does

$$(+ \ 1 \ (* \ 6 \ 7))$$

take to execute?

Computer speeds differ in “real time,” but we can count steps:

$$(+ \ 1 \ (* \ 6 \ 7)) \rightarrow (+ \ 1 \ 42) \rightarrow 43$$

So, evaluation takes 2 steps
Steps for max-item and 1 Element

How long does this expression take?

\[\text{max-item '(2)} \]
Steps for max-item and 1 Element

How long does this expression take?

\[
\text{(max-item '(2))}
\]

\[
\text{(max-item '(2))}
\rightarrow \text{(cond [(empty? (rest '(2))) (first '(2))]} \ldots)
\rightarrow \text{(cond [(empty? empty) (first '(2))]} \ldots)
\rightarrow \text{(cond [true (first '(2))]} \ldots)
\rightarrow \text{(first '(2))}
\rightarrow 2
\]

5 steps — and any list with one item will take five steps
Steps for max-item and 2 Elements

How long does this expression take?

\[(\text{max-item } '(2 1))\]
Steps for max-item and 2 Elements

How long does this expression take?

(max-item '(2 1))

(max-item '(2 1))
→ (cond [(empty? (rest '(2 1))) (first '(2 1))] [else ...])
→ (cond [(empty? '(1)) (first '(2 1))] [else ...])
→ (cond [false (first '(2 1))] [else ...])
→ (cond [else (cond [(> (first '(2 1)) ...) ...] [else ...])])
→ (cond [(> (first '(2 1)) (max-item (rest '(2 1)))) ...) [else ...])
→ (cond [(> 2 (max-item (rest '(2 1)))) ...) [else ...])
→ (cond [(> 2 (max-item '(1))) ...) [else ...])
→ ... → ... → ... → ...
→ (cond [(> 2 1) (first '(2 1))] [else ...])
→ (first '(2 1))
→ 2
Steps for max-item and 2 Elements

How long does this expression take?

\((\text{max-item} \ (2 \ 1))\)

\((\text{max-item} \ (2 \ 1))\)
\(\rightarrow (\text{cond} \ [(\text{empty?} \ (\text{rest} \ (2 \ 1))) \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...])\)
\(\rightarrow (\text{cond} \ [(\text{empty?} \ (1)) \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...])\)
\(\rightarrow (\text{cond} \ [\text{false} \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...])\)
\(\rightarrow (\text{cond} \ [\text{else} \ (\text{cond} \ [(> \ (\text{first} \ (2 \ 1)) \ ...) \ ...] \ [\text{else} \ ...])]\))
\(\rightarrow (\text{cond} \ [(> \ (\text{first} \ (2 \ 1)) \ (\text{max-item} \ (\text{rest} \ (2 \ 1)))) \ ...] \ [\text{else} \ ...])\)
\(\rightarrow (\text{cond} \ [(> \ 2 \ (\text{max-item} \ (\text{rest} \ (2 \ 1)))) \ ...] \ [\text{else} \ ...])\)
\(\rightarrow (\text{cond} \ [(> \ 2 \ (\text{max-item} \ (1))) \ ...] \ [\text{else} \ ...])\)
\(\rightarrow \ ... \rightarrow \ ... \rightarrow \ ... \rightarrow \ ...\)
\(\rightarrow (\text{cond} \ [(> \ 2 \ 1) \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...])\)
\(\rightarrow (\text{first} \ (2 \ 1))\)
\(\rightarrow 2\)

14 steps — where 5 came from the recursive call
Steps for max-item and 2 Elements

How long does this expression take?

\[
\text{(max-item '}(2 1))
\]

\[
\begin{align*}
\text{(max-item '}(2 1)) \\
\rightarrow (\text{cond } [(\text{empty? (rest '}(2 1)))(\text{first '}(2 1))] \ [\text{else ...}]) \\
\rightarrow (\text{cond } [(\text{empty? '}(1))(\text{first '}(2 1))] \ [\text{else ...}]) \\
\rightarrow (\text{cond } [\text{false (first '}(2 1))] \ [\text{else ...}]) \\
\rightarrow (\text{cond } [\text{else (cond } [(> (\text{first '}(2 1)) \ldots) \ldots] \ [\text{else ...}])]) \\
\rightarrow (\text{cond } [(> (\text{first '}(2 1)) \ (\text{max-item (rest '}(2 1))))) \ldots] \ [\text{else ...}]) \\
\rightarrow (\text{cond } [(> 2 \ (\text{max-item (rest '}(2 1)))) \ldots] \ [\text{else ...}]) \\
\rightarrow (\text{cond } [(> 2 \ (\text{max-item '}(1))) \ldots] \ [\text{else ...}]) \\
\rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \\
\rightarrow (\text{cond } [(> 2 1) \ (\text{first '}(2 1))] \ [\text{else ...}]) \\
\rightarrow (\text{first '}(2 1)) \\
\rightarrow 2
\end{align*}
\]

14 steps — where 5 came from the recursive call

Are all 2-element lists the same?
Steps for max-item and 2 Elements

(max-item '(1 2))
Steps for max-item and 2 Elements

\[(\text{max-item } '(1 2))\]

\[(\text{max-item } '(1 2))\]
\[\rightarrow (\text{cond } [\text{empty? } (\text{rest } '(1 2))) (\text{first } '(1 2))] \text{ [else ...]}\]
\[\rightarrow (\text{cond } [\text{empty? } '(2)) (\text{first } '(1 2))] \text{ [else ...]}\]
\[\rightarrow (\text{cond } [\text{false } (\text{first } '(1 2))] \text{ [else ...]}\]
\[\rightarrow (\text{cond } [\text{else } (\text{cond } [(> (\text{first } '(1 2)) \ldots) \ldots] \text{ [else ...]}))\]
\[\rightarrow (\text{cond } [(> (\text{first } '(1 2)) (\text{max-item } (\text{rest } '(1 2)))) \ldots] \text{ [else ...]}\]
\[\rightarrow (\text{cond } [(> 1 (\text{max-item } (\text{rest } '(1 2)))) \ldots] \text{ [else ...]}\]
\[\rightarrow (\text{cond } [(> 1 (\text{max-item } '(2))) \ldots] \text{ [else ...]}\]
\[\rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \]
\[\rightarrow (\text{cond } [(> 1 2) \ldots] \text{ [else ...]}\]
\[\rightarrow (\text{cond } [\text{else } (\text{max-item } (\text{rest } '(1 2))))\]
\[\rightarrow (\text{max-item } (\text{rest } '(1 2)))\]
\[\rightarrow (\text{max-item } '(2))\]
\[\rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \]
\[\rightarrow 2\]
Steps for max-item and 2 Elements

\[(\text{max-item } '(1 2))\]

\[(\text{max-item } '(1 2))\]
→ (cond [(empty? (rest '(1 2))) (first '(1 2))] [else ...])
→ (cond [(empty? '(2)) (first '(1 2))] [else ...])
→ (cond [false (first '(1 2))] [else ...])
→ (cond [else (cond [(> (first '(1 2)) ...) ...] [else ...])])
→ (cond [(> (first '(1 2)) (max-item (rest '(1 2)))) ...) [else ...])
→ (cond [(> 1 (max-item (rest '(1 2)))) ...) [else ...])
→ (cond [(> 1 (max-item '(2))) ...) [else ...])
→ ... → ... → ... → ...
→ (cond [(> 1 2) ...] [else ...])
→ (cond [else (max-item (rest '(1 2))))]
→ (max-item (rest '(1 2)))
→ (max-item '(2))
→ ... → ... → ... → ...
→ 2

20 steps — where 10 came from two recursive calls
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to \texttt{max-item} is

$$T(n) = 10 + 2T(n-1)$$
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to `max-item` is

$$T(n) = 10 + 2T(n-1)$$

$T(1) = 5$
$T(2) = 10 + 2T(1) = 20$
$T(3) = 10 + 2T(2) = 50$
$T(4) = 10 + 2T(3) = 110$
$T(5) = 10 + 2T(4) = 230$

...
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to `max-item` is

$$T(n) = 10 + 2T(n-1)$$

- $T(1) = 5$
- $T(2) = 10 + 2T(1) = 20$
- $T(3) = 10 + 2T(2) = 50$
- $T(4) = 10 + 2T(3) = 110$
- $T(5) = 10 + 2T(4) = 230$

...

- In general, $T(n) > 2^n$

- Note that 2^{30} is 1,073,741,824 — which is why our last test never produced a result
Repairing max-item

In the case of \texttt{max-item}, the problem is easily fixed with \texttt{local}

\begin{verbatim}
(define (max-item nel)
 (cond
 [(empty? (rest nel)) (first nel)]
 [else
 (local [(define r (max-item (rest nel)))]
 (cond
 [(> (first nel) r) (first nel)]
 [else r]))]))
\end{verbatim}

With this definition, there’s always one recursive call

\begin{verbatim}
(max-item '(1 2)) takes 17 steps
\end{verbatim}
Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to `max-item` is

$$T(n) = 12 + T(n-1)$$
Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to `max-item` is

$$T(n) = 12 + T(n-1)$$

$T(1) = 5$
$T(2) = 12 + T(1) = 17$
$T(3) = 12 + T(2) = 29$
$T(4) = 12 + T(3) = 41$
$T(5) = 12 + T(4) = 53$
...

Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to \texttt{max-item} is

$$T(n) = 12 + T(n-1)$$

\begin{align*}
T(1) &= 5 \\
T(2) &= 12 + T(1) = 17 \\
T(3) &= 12 + T(2) = 29 \\
T(4) &= 12 + T(3) = 41 \\
T(5) &= 12 + T(4) = 53 \\
&\ldots
\end{align*}

• In general, $T(n) = 5 + 12(n-1)$

• So our last test takes only 343 steps
Using Local to Reduce Complexity

Before, we used *local* to either make the code nicer or to support abstraction.

Now we’re using *local* to avoid redundant calculations, which avoids evaluation complexity.

Fortunately, these reasons reinforce each other.

Where a value is definitely computed and possibly computed multiple times, always give it a name and compute it once.
We once wrote a `sort-list` function:

\[
; \text{sort-list} : \text{list-of-num} \rightarrow \text{list-of-num} \\
(\text{define} \ (\text{sort-list} \ l) \\
\quad (\text{cond} \\
\quad \quad [(\text{empty?} \ l) \ \text{empty}] \\
\quad \quad [(\text{cons?} \ l) \ (\text{insert} \ (\text{first} \ l) \ (\text{sort-list} \ (\text{rest} \ l)))]])
\]
We once wrote a \texttt{sort-list} function:

\begin{verbatim}
; sort-list : list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) empty]
 [(cons? l) (insert (first l) (sort-list (rest l)))]))
\end{verbatim}

How long does it take to sort a list of \textit{n} numbers?
We once wrote a `sort-list` function:

; sort-list : list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) empty]
 [(cons? l) (insert (first l) (sort-list (rest l))))])

How long does it take to sort a list of \(n \) numbers?

We have only one recursive call to `sort-list`, so it doesn’t have the same problem as before...
Insertion Sort

... but what about \texttt{insert}?

\begin{verbatim}
; sort-list : list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) empty]
 [(cons? l) (insert (first l) (sort-list (rest l)))]))

; insert : num list-of-num -> list-of-num
(define (insert n l)
 (cond
 [(empty? l) (list n)]
 [(cons? l)
 (cond
 [(< n (first l)) (cons n l)]
 [else (cons (first l) (insert n (rest l)))])))]))
\end{verbatim}
Insertion Sort

... but what about insert?

; sort-list : list-of-num --> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) empty]
 [(cons? l) (insert (first l) (sort-list (rest l)))])
)

; insert : num list-of-num --> list-of-num
(define (insert n l)
 (cond
 [(empty? l) (list n)]
 [(cons? l)
 (cond
 [(< n (first l)) (cons n l)]
 [else (cons (first l) (insert n (rest l)))]))])

On each iteration of sort-list, there's a call to sort-list
and a call to insert
Insert Time

insert itself is like the repaired max-item:

; insert : num list-of-num -> list-of-num
(define (insert n l)
 (cond
 [(empty? l) (list n)]
 [(cons? l)
 (cond
 [(< n (first l)) (cons n l)]
 [else (cons (first l) (insert n (rest l)))]))])

In the worst case, insert into a list of size \(n\) takes \(k_1 + k_2n\)

The variables \(k_1\) and \(k_2\) stand for some constant
Insertion Sort Time

Given that the time for \texttt{insert} is $k_1 + k_2n$...

\begin{verbatim}
; sort-list : list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) empty]
 [(cons? l) (insert (first l) (sort-list (rest l)))]))
\end{verbatim}

The time for \texttt{sort-list} is defined by

\[
T(0) = k_3 \\
T(n) = k_4 + T(n-1) + k_1 + k_2n
\]
Insertion Sort Time

\[T(0) = k_3 \]
\[T(n) = k_4 + T(n-1) + k_1 + k_2n \]

Even if each \(k \) were only 1:

\[T(0) = 1 \]
\[T(1) = 4 \]
\[T(2) = 8 \]
\[T(2) = 13 \]
\[T(3) = 19 \]

\[\ldots \]

• In the long run, \(T(n) \) is a lot like \(n^2 \)

• This is a lot better than \(2^n \) — but sorting a list of 10,000 items takes more than 100,000,000 steps
Sorting Algorithms

- The **list-of-num** template leads to the **insertion sort** algorithm
 - It’s not practical for large lists

- **Algorithms** such as **quick sort** and **merge sort** are faster
Merge Sort

\[
\begin{align*}
\text{(define (merge-sort l)} \\
\text{ (cond)} \\
\text{ [(or (empty? l) (empty? (rest l))) l]} \\
\text{ [else} \\
\text{ (local [(define a-half (even-items l))]} \\
\text{ (define b-half (odd-items l))]} \\
\text{ (merge-lists)} \\
\text{ (merge-sort a-half)} \\
\text{ (merge-sort b-half)))]})
\end{align*}
\]

- **even-items** and **odd-items** each take \(k_5 + k_6n\) steps
- **merge-lists** takes \(k_7 + k_8n\) steps
- So, for **merge-sort**:

\[
\begin{align*}
T(0) &= k_9 \\
T(1) &= k_{10} \\
T(n) &= k_{11} + 2T(n/2) + 2k_5 + 2k_6n + k_7 + k_8n
\end{align*}
\]
Merge Sort Time

Simplify by collapsing constants:

\[T(n) = k_{12} + 2T(n/2) + k_{13}n \]

Setting constants to 1:

\[\begin{align*}
&\ldots \\
&T(5) = 21 \\
&T(6) = 27 \\
&T(7) = 33 \\
&T(8) = 39 \\
&T(9) = 46 \\
&\ldots
\end{align*} \]

In the long run, \(T(n) \) is a lot like \(n\log_2 n \)

- Sorting a list of 10,000 items takes something like 100,000 steps (which is 1,000 times faster than insertion sort)
The Cost of Computation

The study of execution time is called *algorithm analysis*, and the theoretical bound for a given problem is the subject of *complexity theory*

Practical points:

1. Use *local* to avoid redundant computations
 - Something you can always do to tame evaluation
2. Algorithms like *merge-sort* are in textbooks
 - You mostly learn them, not invent them
The Cost of Computation

The study of execution time is called *algorithm analysis*, and the theoretical bound for a given problem is the subject of *complexity theory*.

Practical points:

1. Use *local* to avoid redundant computations
 - Something you can always do to tame evaluation

2. Algorithms like *merge-sort* are in textbooks
 - You mostly learn them, not invent them

Other courses teach you more about the second category