Max of a List

Implement the function `max-item` which returns the biggest number in a list of numbers
Data and Signature

Data: list-of-num, obviously

Signature:

; list-of-num -> num
Examples

(check-expect (max-item '(2 7 5)) 7)
Examples

(check-expect (max-item '(2 7 5)) 7)
(check-expect (max-item '()) ...)
Examples

(check-expect (max-item '(2 7 5)) 7)
(check-expect (max-item '()) ...)

Problem: max-item makes no sense on an empty list
Data and Signature, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)
Data and Signature, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)

Signature:

; nonempty-list-of-num -> num
Examples, Again

(check-expect (max-item '(2 7 5)) 7)
(check-expect (max-item '(2)) 2)
Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)
Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)

(define (max-item nel)
 (cond
 [(empty? (rest nel)) ... (first nel) ...]
 [else
 ... (first nel)
 ... (max-item (rest nel)) ...])))
(define (max-item nel)
 (cond
 [(empty? (rest nel)) (first nel)]
 [else
 (cond
 [(> (first nel) (max-item (rest nel)))
 (first nel)]
 [else
 (max-item (rest nel))]]))
Test

(check-expect (max-item '(2)) 2)

works fine
Test

(check-expect (max-item '(2)) 2)
 works fine

(check-expect (max-item '(1 2 3 4 5 6 7 8 9 10)) 10)
 works fine
Test

(check-expect (max-item '(2)) 2)

works fine

(check-expect (max-item '(1 2 3 4 5 6 7 8 9 10)) 10)

works fine

(check-expect (max-item '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)) 30)

answer never appears!
The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way too long
The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way too long

Even if you buy a computer that’s 10 times faster, the problem shows up with about 23 items...
The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way too long

Even if you buy a computer that’s 10 times faster, the problem shows up with about 23 items...

How long does a program take to run?
Counting Steps

How long does

\[(+ 1 (* 6 7))\]

take to execute?
Counting Steps

How long does

\[(+ 1 (* 6 7)) \]

take to execute?

Computer speeds differ in “real time,” but we can count steps:

\[(+ 1 (* 6 7)) \rightarrow (+ 1 42) \rightarrow 43 \]

So, evaluation takes 2 steps
Steps for max-item and 1 Element

How long does this expression take?

\[(\text{max-item } '(2))\]
Steps for max-item and 1 Element

How long does this expression take?

$(\text{max-item '}(2))$

$(\text{max-item '}(2))$
→ $(\text{cond } ((\text{empty? (rest '}(2))) \ (\text{first '}(2)))) \ ...$
→ $(\text{cond } ((\text{empty? '}()) \ (\text{first '}(2)))) \ ...$
→ $(\text{cond } [\text{true }\ (\text{first '}(2))]) \ ...$
→ $(\text{first '}(2))$
→ 2

5 steps — and any list with one item will take five steps
Steps for max-item and 2 Elements

How long does this expression take?

\[(\text{max-item } '(2 1))\]
Steps for max-item and 2 Elements

How long does this expression take?

$$(\text{max-item} \ ' (2 \ 1))$$

$$(\text{max-item} \ ' (2 \ 1))$$
$$\rightarrow (\text{cond} \ [(\text{empty?} \ (\text{rest} \ ' (2 \ 1))) \ (\text{first} \ ' (2 \ 1))] \ [\text{else} \ ...])$$
$$\rightarrow (\text{cond} \ [(\text{empty?} \ '(1)) \ (\text{first} \ ' (2 \ 1))] \ [\text{else} \ ...])$$
$$\rightarrow (\text{cond} \ [\text{false} \ (\text{first} \ ' (2 \ 1))] \ [\text{else} \ ...])$$
$$\rightarrow (\text{cond} \ [\text{else} \ (\text{cond} \ [(> \ (\text{first} \ ' (2 \ 1)) \ ...) \ ...) \ [\text{else} \ ...]))])$$
$$\rightarrow (\text{cond} \ [(> \ (\text{first} \ ' (2 \ 1)) \ (\text{max-item} \ (\text{rest} \ ' (2 \ 1)))) \ ...) \ [\text{else} \ ...])$$
$$\rightarrow (\text{cond} \ [(> \ 2 \ (\text{max-item} \ (\text{rest} \ ' (2 \ 1)))) \ ...) \ [\text{else} \ ...])$$
$$\rightarrow (\text{cond} \ [(> \ 2 \ (\text{max-item} \ '(1))) \ ...) \ [\text{else} \ ...])$$
$$\rightarrow \ ... \ \rightarrow \ ... \ \rightarrow \ ...$$
$$\rightarrow (\text{cond} \ [(> \ 2 \ 1) \ (\text{first} \ ' (2 \ 1))] \ [\text{else} \ ...])$$
$$\rightarrow (\text{first} \ ' (2 \ 1))$$
$$\rightarrow 2$$
Steps for max-item and 2 Elements

How long does this expression take?

\[
\text{(max-item '}(2\ 1)\text{)}
\]

\[
\begin{array}{l}
\text{(max-item '}(2\ 1)\text{)} \\
\rightarrow \text{(cond [((empty? (rest '}(2\ 1)\text{)) (first '}(2\ 1)\text{))] [else ...])} \\
\rightarrow \text{(cond [((empty? '}(1)\text{)) (first '}(2\ 1)\text{))] [else ...])} \\
\rightarrow \text{(cond [false (first '}(2\ 1)\text{)] [else ...])} \\
\rightarrow \text{(cond [else (cond [>(first '}(2\ 1)\text{)) ...] [else ...]])} \\
\rightarrow \text{(cond [>(first '}(2\ 1)\text{)) (max-item (rest '}(2\ 1)\text{))) ...] [else ...])} \\
\rightarrow \text{(cond [>(2 (max-item (rest '}(2\ 1)\text{))) ...] [else ...])} \\
\rightarrow \text{(cond [>(2 (max-item '}(1)\text{)) ...] [else ...])} \\
\rightarrow \text{... → ... → ... → ...} \\
\rightarrow \text{(cond [>(2 1) (first '}(2\ 1)\text{)] [else ...])} \\
\rightarrow \text{(first '}(2\ 1)\text{)} \\
\rightarrow 2
\end{array}
\]

14 steps — where 5 came from the recursive call
Steps for max-item and 2 Elements

How long does this expression take?

\[
\text{max-item } '(2 1)\]

\[
\begin{align*}
\text{(max-item } '(2 1)) \\
\rightarrow \text{(cond [(empty? (rest } '(2 1))) (first } '(2 1)))] \text{ [else ...])} \\
\rightarrow \text{(cond [(empty? } '(1)) (first } '(2 1)))] \text{ [else ...])} \\
\rightarrow \text{(cond [false (first } '(2 1)]) [else ...])} \\
\rightarrow \text{(cond [else (cond [(> (first } '(2 1)) ...] ...] [else ...)])} \\
\rightarrow \text{(cond [(> (first } '(2 1)) (max-item (rest } '(2 1)))]] ...] [else ...])} \\
\rightarrow \text{(cond [(> 2 (max-item (rest } '(2 1)))]] ...] [else ...])} \\
\rightarrow \text{(cond [(> 2 (max-item } '(1)]) ...] [else ...])} \\
\rightarrow \text{... \rightarrow ... \rightarrow ... \rightarrow ...} \\
\rightarrow \text{(cond [(> 2 1) (first } '(2 1)]) [else ...])} \\
\rightarrow \text{(first } '(2 1)) \\
\rightarrow 2
\end{align*}
\]

14 steps — where 5 came from the recursive call

Are all 2-element lists the same?
Steps for max-item and 2 Elements

\[\text{max-item } \langle 1 \ 2 \rangle \]
Steps for max-item and 2 Elements

\[(\text{max-item (1 2)})\]
Steps for max-item and 2 Elements

\[(\text{max-item } '(1 2))\]

\[(\text{max-item } '(1 2))\]
→ (cond [(empty? (rest '(1 2))) (first '(1 2))] [else ...])
→ (cond [(empty? '(2)) (first '(1 2))] [else ...])
→ (cond [false (first '(1 2))] [else ...])
→ (cond [else (cond [(> (first '(1 2)) ...) ...] [else ...])])
→ (cond [(> (first '(1 2)) (max-item (rest '(1 2))))] [else ...])
→ (cond [(> 1 (max-item (rest '(1 2))))] [else ...])
→ (cond [(> 1 (max-item '(2)))] [else ...])
→ ... → ... → ... → ...
→ (cond [(> 1 2)] [else ...])
→ (cond [else (max-item (rest '(1 2)))]))
→ (max-item (rest '(1 2)))
→ (max-item '(2))
→ ... → ... → ... → ...
→ 2

20 steps — where 10 came from two recursive calls
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to \texttt{max-item} is

$$T(n) = 10 + 2T(n-1)$$
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to max-item is

$$T(n) = 10 + 2T(n-1)$$

- $T(1) = 5$
- $T(2) = 10 + 2T(1) = 20$
- $T(3) = 10 + 2T(2) = 50$
- $T(4) = 10 + 2T(3) = 110$
- $T(5) = 10 + 2T(4) = 230$

...
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to max-item is

$$T(n) = 10 + 2T(n-1)$$

- $T(1) = 5$
- $T(2) = 10 + 2T(1) = 20$
- $T(3) = 10 + 2T(2) = 50$
- $T(4) = 10 + 2T(3) = 110$
- $T(5) = 10 + 2T(4) = 230$
- ...

- In general, $T(n) > 2^n$
- Note that 2^{30} is 1,073,741,824 — which is why our last test never produced a result
Repairing max-item

In the case of `max-item`, the problem is easily fixed with `local`

```scheme
(define (max-item nel)
  (cond
   [(empty? (rest nel)) (first nel)]
   [else
    (local [(define r (max-item (rest nel)))]
      (cond
       [>(first nel) r) (first nel)]
       [else r])]]))
```

With this definition, there’s always one recursive call

```
(max-item '(1 2)) takes 17 steps
```
Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to max-item is

$$T(n) = 12 + T(n-1)$$
Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to `max-item` is

$$T(n) = 12 + T(n-1)$$

\[T(1) = 5\]
\[T(2) = 12 + T(1) = 17\]
\[T(3) = 12 + T(2) = 29\]
\[T(4) = 12 + T(3) = 41\]
\[T(5) = 12 + T(4) = 53\]

...
Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to `max-item` is

$$T(n) = 12 + T(n-1)$$

- $T(1) = 5$
- $T(2) = 12 + T(1) = 17$
- $T(3) = 12 + T(2) = 29$
- $T(4) = 12 + T(3) = 41$
- $T(5) = 12 + T(4) = 53$

...

- In general, $T(n) = 5 + 12(n-1)$
- So our last test takes only 343 steps
Using Local to Reduce Complexity

Before, we used `local` to either make the code nicer or to support abstraction.

Now we’re using `local` to avoid redundant calculations, which avoids evaluation complexity.

Fortunately, these reasons reinforce each other.

Where a value is definitely computed and possibly computed multiple times, always give it a name and compute it once.
We once wrote a `sort-list` function:

```lisp
; list-of-num -> list-of-num
(define (sort-list l)
  (cond
    [(empty? l) '()]
    [(cons? l) (insert (first l) (sort-list (rest l))))])
```
We once wrote a `sort-list` function:

```scheme
; list-of-num -> list-of-num
(define (sort-list l)
  (cond
   [(empty? l) '()]
   [(cons? l) (insert (first l) (sort-list (rest l)))]))
```

How long does it take to sort a list of n numbers?
We once wrote a `sort-list` function:

```scheme
; list-of-num -> list-of-num
(define (sort-list l)
  (cond
   [(empty? l) '()]
   [(cons? l) (insert (first l) (sort-list (rest l)))]))
```

How long does it take to sort a list of n numbers?

We have only one recursive call to `sort-list`, so it doesn’t have the same problem as before...
Insertion Sort

... but what about `insert`?

; list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) '(())
 [(cons? l) (insert (first l) (sort-list (rest l)))]))

; num list-of-num -> list-of-num
(define (insert n l)
 (cond
 [(empty? l) (list n)]
 [(cons? l)
 (cond
 [(< n (first l)) (cons n l)]
 [else (cons (first l) (insert n (rest l)))])))]))
... but what about \texttt{insert}?

\begin{verbatim}
; list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) '()]
 [(cons? l) (insert (first l) (sort-list (rest l)))]))

; num list-of-num -> list-of-num
(define (insert n l)
 (cond
 [(empty? l) (list n)]
 [(cons? l)
 (cond
 [(< n (first l)) (cons n l)]
 [else (cons (first l) (insert n (rest l)))]))])
\end{verbatim}

On each iteration of \texttt{sort-list}, there's a call to \texttt{sort-list} and a call to \texttt{insert}.
Insert Time

insert itself is like the repaired **max-item**:

```scheme
; num list-of-num -> list-of-num
(define (insert n l)
  (cond
   [(empty? l) (list n)]
   [(cons? l)
     (cond
      [(< n (first l)) (cons n l)]
      [else (cons (first l) (insert n (rest l)))]))])
```

In the worst case, **insert** into a list of size n takes $k_1 + k_2n$

The variables k_1 and k_2 stand for some constant
Insertion Sort Time

Given that the time for \texttt{insert} is $k_1 + k_2n$...

; list-of-num \rightarrow list-of-num
(define (sort-list l)
 (cond
 [(empty? l) '()]
 [(cons? l) (insert (first l) (sort-list (rest l)))]))

The time for \texttt{sort-list} is defined by

\[
T(0) = k_3 \\
T(n) = k_4 + T(n-1) + k_1 + k_2n
\]
Insertion Sort Time

\[T(0) = k_3 \]
\[T(n) = k_4 + T(n-1) + k_1 + k_2n \]

Even if each \(k \) were only 1:

\[T(0) = 1 \]
\[T(1) = 4 \]
\[T(2) = 8 \]
\[T(2) = 13 \]
\[T(3) = 19 \]

...

- In the long run, \(T(n) \) is a lot like \(n^2 \)
- This is a lot better than \(2^n \) — but sorting a list of 10,000 items takes more than 100,000,000 steps
Sorting Algorithms

• The list-of-num template leads to the insertion sort algorithm
 ○ It’s not practical for large lists

• Algorithms such as quick sort and merge sort are faster
Merge Sort

(define (merge-sort l)
 (cond
 [(or (empty? l) (empty? (rest l))) l]
 [else
 (local [(define a-half (even-items l))
 (define b-half (odd-items l))]
 (merge-lists
 (merge-sort a-half)
 (merge-sort b-half))))))

• **even-items** and **odd-items** each take $k_5 + k_6n$ steps

• **merge-lists** takes $k_7 + k_8n$ steps

• So, for **merge-sort**:

\[
T(0) = k_9 \\
T(1) = k_{10} \\
T(n) = k_{11} + 2T(n/2) + 2k_5 + 2k_6n + k_7 + k_8n
\]
Merge Sort Time

Simplify by collapsing constants:

\[T(n) = k_{12} + 2T(n/2) + k_{13}n \]

Setting constants to 1:

\[
\begin{align*}
&\ldots \\
&T(5) = 21 \\
&T(6) = 27 \\
&T(7) = 33 \\
&T(8) = 39 \\
&T(9) = 46 \\
&\ldots
\end{align*}
\]

In the long run, \(T(n) \) is a lot like \(n \log_2 n \)

- Sorting a list of 10,000 items takes something like 100,000 steps
 (which is 1,000 times faster than insertion sort)
The Cost of Computation

The study of execution time is called \textit{algorithm analysis}, and the theoretical bound for a given problem is the subject of \textit{complexity theory}.

Practical points:

1. Use \texttt{local} to avoid redundant computations
 - Something you can always do to tame evaluation

2. Algorithms like \texttt{merge-sort} are in textbooks
 - You mostly learn them, not invent them
The Cost of Computation

The study of execution time is called *algorithm analysis*, and the theoretical bound for a given problem is the subject of *complexity theory*

Practical points:

1. **Use local** to avoid redundant computations
 - Something you can always do to tame evaluation
2. **Algorithms like merge-sort** are in textbooks
 - You mostly learn them, not invent them

Other courses teach you more about the second category