
Tables and Helper Functions
13 September 2021

cmpu 101 § 1 · Problem-Solving and Abstraction

Helper functions

We write functions to avoid repeating the same
computations over and over, as we saw with our
cake shop functions.

But what if you find yourself repeating code
between functions?

Consider:
fun greet(firstname, surname, position):
 if position == "professor":
 string-append("Hello Professor ", surname)
 else if position == "student":
 string-append("Hello ", firstname)
 else:
 string-append("Hello ",
 string-append(firstname,
 string-append(" ", surname)))
 end
end

and
fun leave(firstname, surname, position):
 if position == "professor":
 string-append("Bye Professor ", surname)
 else if position == "student":
 string-append("Bye ", firstname)
 else:
 string-append("Bye ",
 string-append(firstname,
 string-append(" ", surname)))
 end
end

We’re solving the same problem – figuring out how
to address a person based on their name and
position – twice.

And we might need to write many more functions
that need to do the same thing!

fun greet(firstname, surname, position):
 string-append("Hello ",
 name(firstname, surname, position))
end

fun leave(firstname, surname, position):
 string-append("Bye ",
 name(firstname, surname, position))
end

fun name(firstname, surname, position):
 if position == "professor":
 string-append("Professor ", surname)
 else if position == "student":
 firstname
 else:
 string-append(firstname,
 string-append(" ", surname))
 end
end

Big functions cause lots of problems!

Helper functions let us keep our functions small,
readable, and testable.

Write as many helper functions as a problem seems to require, even if
an assignment or lab doesn’t explicitly tell you to!

Functions,

Functions who need functions,

Are the luckiest functions in the world…

Example: Gradebook

We’ve now had two labs, our first assignment is out,
the grading is piling up.

Let’s make my life easier by writing a program to
manage a gradebook.

A central problem is computing various averages, e.g.,
the average of how everyone does on Assignment 1, or

the average of a student across all their assignments.

Let’s say:
Allie gets

85% on Assignment 1

90% on Assignment 2

Carl gets

75% on Assignment 1

60% on Assignment 2

How can a function look up the grade a student gets on a specific
assignment?

fun look-up-grade(student :: String, asmt :: String) -> Number:
 doc: "Return grade of a given student on a given assignment"
 if student == "Allie":
 if asmt == "asmt1":
 85
 else if asmt == "asmt2":
 90
 else:
 raise("No such assignment")
 end
 else if student == "Carl":
 if asmt == "asmt1":
 75
 else if asmt == "asmt2":
 60
 else:
 raise("No such assignment")
 end
 else:
 raise("No such student")
 end
end

This is not a great way to do this.

Why not?

KEY IDEA Separate data from computations.

In practice, how do instructors keep gradebooks?

Tables

gradebook = table: name, NRO, asmt1, asmt2
 row: "Allie", false, 85, 90
 row: "Carl", false, 75, 60
 row: "Elan", true, 95, 63
 row: "Lavon", false, 87, 88
 row: "Nunu", true, 70, 0
end

gradebook = table: name, NRO, asmt1, asmt2
 row: "Allie", false, 85, 90
 row: "Carl", false, 75, 60
 row: "Elan", true, 95, 63
 row: "Lavon", false, 87, 88
 row: "Nunu", true, 70, 0
end

What computations might you want to do with this table?

We could
Compute course grades

Get a histogram of performance on each assignment

Look at a student’s change (delta) from the first assignment to the
second assignment

Check whether students who NRO did worse on Assignment 2 than
those who didn’t

Get names of students who did poorly on the first assignment

And more

What operations do you need to do these things?
To look only at low grades, you need to

Filter out some rows,

To see high or low scores first, you need to

Re-order the rows,

To compute the average for students who NRO or don’t, you need to

Perform computation based on a particular column, and

To compute the average for each student, you might want to

Add a new column with particular values.

gradebook = table: name, NRO, asmt1, asmt2
 row: "Allie", false, 85, 90
 row: "Carl", false, 75, 60
 row: "Elan", true, 95, 63
 row: "Lavon", false, 87, 88
 row: "Nunu", true, 70, 0
end

KEY IDEA Once data are made up of smaller pieces
of data, we want to organize the data to make it
easier to maintain and process.

Tables are good for data about multiple entities,
each of which has the same attributes.

gradebook = table:
 name :: String,
 NRO :: Boolean,
 asmt1 :: Number,
 asmt2 :: Number
 row: "Allie", false, 85, 90
 row: "Carl", false, 75, 60
 row: "Elan", true, 95, 63
 row: "Lavon", false, 87, 88
 row: "Nunu", true, 70, 0
end

As with functions, we can
specify the types for parts of
a table.

Functions over tables

To have all the functions we want for working with
tables, let’s use a library:

include shared-gdrive("dcic-2021",
"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

Order the rows by descending values on
Assignment 1:

Order the rows by descending values on
Assignment 1:

order-by(gradebook, "asmt1", false)

Order the rows by descending values on
Assignment 1:

order-by(gradebook, "asmt1", false)

This means sort descending; true means ascending.

order-by(t :: Table,
 colname :: String,
 sort-up :: Boolean)
 -> Table

Given a table and the name of a column in that
table, return a table with the same rows but
ordered based on the named column.

If sort-up is true, the table will be sorted in
ascending order, otherwise it will be in descending
order.

Keep only the rows in which the NRO column
contains true.

The filter-with function produces a table with rows for which a
given function returns true:

filter-with(gradebook, taking-nro)

So, we need a function that takes a row and produces a Boolean
indicating whether to keep the row:

fun taking-nro(r :: Row) -> Boolean:
 doc: "Get the value in the given row's NRO column"
 r["NRO"]
end

And another for those who aren’t NRO-ing:
fun not-taking-nro(r :: Row) -> Boolean:
 not(r["NRO"])
end

filter-with(t :: Table,
 keep :: (Row -> Boolean))
 -> Table

Given a table and a predicate on rows, returns a
table with only the rows for which the predicate
returns true.

Keep those students whose grades dropped from
Assignment 1 to Assignment 2:

fun asmt2-lower(r :: Row) -> Boolean:
 r["asmt1"] > r["asmt2"]
end

filter-with(gradebook, asmt2-lower)

To get just the first row from the table, we use its
numeric index:

gradebook.row-n(0)

To get a particular column’s value from a row, we
specify the column name using square brackets:

gradebook.row-n(0)["asmt1"]

Acknowledgments

This lecture incorporates material from:
Kathi Fisler, Brown University

