
Map

What if we want to take a recipe and make it vegan?

Let’s think about what the input and output should
be. We’re starting with the list of ingredients,

[list: "egg", "butter", "flour",
 "sugar", "salt", "baking powder",
 "blueberries"]

and it should become, say,
[list: "flax", "margarine", "flour",
 "sugar", "salt", "baking powder",
 "blueberries"]

Sorry, meat-lovers!

We need an operation that produces a list, where
some of the items are different than in the input list.

We can’t do this with member, distinct, or filter.

L.map is similar to the transform-column function
we used with tables.

It takes a function and a list as input and produces a
list where each item is the result of running the
function on the corresponding item of the input list.

fun veganize-ingredient(ingredient :: String) -> String:
 doc: "Change a non-vegan ingredient to its vegan
equivalent"
 if ingredient == "egg":
 "flax"
 else if ingredient == "pork":
 "mushroom"
 else if ingredient == "beef":
 "tofu"
 else if ingredient == "chicken":
 "chick'n"
 else if ingredient == "butter":
 "margarine"
 else:
 ingredient
 end
end

fun veganize-recipe(recipe :: List<String>) -> List<String>:
 doc: "Update a recipe to be vegan"
 L.map(veganize-ingredient, recipe)
where:
 veganize-recipe(pasta) is pasta
 veganize-recipe(dumplings) is
 [list: "flax", "wonton wrappers",
 "mushroom", "garlic", "salt", "soy sauce"]
end

Because veganize-ingredient is just a helper function for
veganize-recipe, we might prefer to define it inside veganize-
recipe:

fun veganize-recipe(recipe :: List<String>) -> List<String>:
 fun veganize-ingredient(ingredient :: String) -> String:
 if ingredient == "egg": "flax"
 else if ingredient == "pork": "mushroom"
 else if ingredient == "beef": "tofu"
 else if ingredient == "chicken": "chick'n"
 else if ingredient == "butter": "margarine"
 else: ingredient
 end
 end
 L.map(veganize-ingredient, recipe)
where:
 veganize-recipe(pasta) is pasta
 veganize-recipe(dumplings) is [list: "flax", "wonton wrappers",
 "mushroom", "garlic", "salt", "soy sauce"]
end

Operation signatures

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

Can we get
more specific?

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

(a -> Boolean), List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

A function that takes an input of
some type – call it a – and returns
a Boolean.

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

(a -> Boolean), List<a> -> List<a>

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

The items in the input and output
lists will be of the same type a,
otherwise we couldn’t run the
predicate function on them.

What about map?
Function, List -> List

What about map?
(a -> b), List -> List

A function that takes an input of
some type – call it a – and returns
an output of type b, which might
be the same as a or might not.
E.g., we might be taking a Number
and converting it to a String.

What about map?
(a -> b), List<a> -> List The input list needs to be made of

as that we can give to that
function.

What about map?
(a -> b), List<a> -> List

The output list will be made of the
bs that the function returned.

For a full list of operations and their signatures, see
the Pyret lists documentation.

https://www.pyret.org/docs/latest/lists.html

Lists and tables

We’ve seen one way of describing a set of recipes –
as a set of hardcoded lists.

This makes sense when we have a small set of
recipes that doesn’t change often, but we might
want something better.

Another possibility would be to use a table with one column per
ingredient:

recipes1 = table:
 name :: String, spaghetti :: Boolean, milk :: Boolean,
 tomatoes :: Boolean, onions :: Boolean, blueberries :: Boolean,
 garlic :: Boolean, salt :: Boolean
 row: "pasta", true, false, true, true, false, true, true
end

The table would let us make plots and charts using
the operations we know in Pyret

The lists are easier to write and modify

The tables could become sparse if we add more
categories and ingredients

Whether you use tables or lists depends on the data
you have and how you plan to use it.

For the programs we’ve written today, the lists were
sufficient and lightweight, so they were the better
choice.

Other programs might have benefitted from the
table-shaped data.

Another possibility we’ll return to later is combining lists and
tables, e.g.,

recipes2 = table:
 name :: String, ingredients :: List<String>
 row: "pasta", [list: "spaghetti", "tomatoes", "garlic", "onion", "salt"]
end

Lecture code:
https://code.pyret.org/editor#share=1j8jQBfC7dt04L6wqwddliK8O0AJzeP2a&v=1904b2c

https://code.pyret.org/editor#share=1j8jQBfC7dt04L6wqwddliK8O0AJzeP2a&v=1904b2c

