
Names, Types, and
Organization

1 September 2021

cmpu 101 § 04 and 05 · Problem-Solving and Abstraction

Where are we?

A program (or script) instructs a computer to do
something.

These instructions must be very specific for the computer to carry
them out.

But programs also need to be understood by people, so they must be
readable!

We saw we need at least three types of data:
Numbers to describe flag dimensions

Strings to describe colors

Images for the flags and the shapes in them

To work with these data types, we need to use a
programming language and programming environment.

We write our computation in the language.

We run the program in the environment.

code.pyret.org

Definitions window Interactions window

https://code.pyret.org

Use the interactions window for:
Trying out expressions

Checking syntax

Use the definitions window for:
Building complex expressions

Naming expressions

Using previously defined expressions

Saving your code as files!

Prompt

(3 + 4) * (5 + 1) is an expression – a
computation that produces an answer.

A program consists of one or more computations
you want to run.

An individual number like 5 or string like "red" is a
value – it can’t be computed any further.

In other words, a value is its own answer.

We can call functions that will draw an image of a
particular shape, e.g.,

circle(30, "solid", "red")

We can manipulate images much like we can
manipulate numbers.

Numbers can be added, subtracted, etc.

Images can overlaid, rotated, flipped, etc.

Operations may only work on
certain types of data!

Evaluation

How does something like (4 + 2) / 3 work?
What is the operator / dividing?

Shouldn’t / expect two numbers?

Even though (4 + 2) isn’t a number, it’s an
expression that evaluates to a number.

This works for all data types, not just numbers!

Let’s say we want to make this image:

How could we do this using above?

above only takes two arguments, but we can make
one of the arguments be the image that results from
another call to above!

What’s in a name?

This is a lot to type:
above(
 above(
 circle(30, "solid", "red"),
 circle(30, "solid", "yellow")),
 circle(30, "solid", "green"))

But we can give it a name:
traffic-light = above(
 above(
 circle(30, "solid", "red"),
 circle(30, "solid", "yellow")),
 circle(30, "solid", "green"))

An expression of the form

 ⟨name⟩ = ⟨expression⟩

tells Pyret to associate the value of ⟨expression⟩
with ⟨name⟩.

Every time you type ⟨name⟩, Pyret will substitute
the value for you, e.g.,

x = 5
x + 4

will evaluate to 9.

We can also give names to pieces so our
traffic-light definition isn’t so complex.

As you build up more complex images from simpler ones, you’re
following a core idea called composition.

Programs are always built of smaller programs that do parts of the larger task you want
to perform.

We’ll often use composition in this course.

Note there’s no output from
entering a definition.

It only has a side effect of telling
Pyret to associate the name
with the value.

Names must be given a value
before being used.

In Pyret, names are immutable,
which means they can only be
defined once.

Windows and files

Using the definitions window also lets us save files of
our code to load again later, as you’ll do for labs and
homework assignments.

CPO will save these to your Google Drive if you’re
logged in.

Which window would I use if…
I want to see if I can make a blue circle?

I want to define my-shape as a blue circle and use it later in my code?

I want to see if Pyret will accept this: print "5"?

I want to start my assignment now and finish it later?

Summary

Programs are formed of expressions and definitions.

Expressions compose (or nest) to create larger
programs.

The structure of data is reflected in the structure of
the expressions that create the data.

Acknowledgments

This lecture incorporates material from:
Kathi Fisler, Brown University

 
These lecture notes are courtesy of  
Jonathan Gordon, who kindly allowed me to use
them for this make-up lecture—thanks Jonathan!

