
Introduction to Lists
6 October 2021

cmpu 101 § 04/05 · Problem-Solving and Abstraction

Table trouble

Is every discount in the table from a valid set of
discount codes?

At the moment, we might write
fun check-discounts1(t :: Table) -> Table:
 doc: "Filter out rows whose discount code is not valid"

 fun invalid-code(r :: Row) -> Boolean:
 not(
 (r["discount"] == "STUDENT") or
 (r["discount"] == "BIRTHDAY") or
 (r["discount"] == "EARLYBIRD") or
 (r["discount"] == ""))
 end

 filter-with(t, invalid-code)
end

(plus appropriate test cases!)

☹

Every time the set of discount codes changes, we
need to change our function.

But how you check the codes shouldn’t change; it’s
just the data that’s changing.

How can we rewrite this function so the set of valid
discount codes is written outside the function?

☹

Lists to the rescue

Lists are one of the key data structures in
programming.

Lists feature:
An unbounded number of items

An order on items (first, second, third, …)

Many built-in operations on lists

A list is like a column of a table, but without the header:
valid-discounts = [list: "STUDENT", "BIRTHDAY",
"EARLYBIRD", ""]

To work with lists, we import the library and we give it a special
name – L – to avoid conflicts between the names of functions
that work with lists and existing functions:

import lists as L

We can rewrite our function to check if the discount code in a
particular row is one of the valid discount codes, using the
L.member function to check if something is a member of a given
list:

fun check-discounts(t :: Table) -> Table:
 doc: "Filter out rows whose discount code is not valid"

 fun invalid-code(r :: Row) -> Boolean:
 not(L.member(valid-discounts, r["discount"]))
 end

 filter-with(t, invalid-code)
end

Tables and lists

When we’ve been working with tables we’ve been
using the data type Row, but we never saw a
Column data type!

Why not? Well, a column consists of an ordered
collection of values, of unbounded length.

A column is really just a list!

To get a list of values from a column in a table, we
can use the get-column table operator:

››› event-data.get-column("name")
[list: "Josie", "Sam", "Bart", "Ernie",
"Alvina", "Zander", "Shweta"]

What if we want the names of everyone who used
the "STUDENT" discount code?

rows =
 filter-with(
 event-data-clean,
 lam(r): r["discount"] == "STUDENT" end)
rows.get-column("name")

List operations

You could use lists to keep track of the ingredients used for
different recipes:

pancakes = [list: "egg", "butter", "flour",
 "sugar", "salt", "baking powder", "blueberries"]
dumplings = [list: "egg", "wonton wrappers",
 "pork", "garlic", "salt", "gf soy sauce"]
pasta = [list: "spaghetti", "tomatoes",
 "garlic", "onion"]

And it would be helpful to know what ingredients we already
have:

pantry = [list: "spaghetti", "wonton wrappers",
 "garlic"]

Let’s say we want to go shopping for the ingredients we need to
make all three dishes. How would we make such a list?

meal-plan = L.append(pancakes,
 L.append(dumplings, pasta))

append combines two lists,
adding one onto the end
of the other.

Let’s say we want to go shopping for the ingredients we need to
make all three dishes. How would we make such a list?

meal-plan = L.append(pancakes,
 L.append(dumplings, pasta))

shopping-list = L.filter(
 lam(i): not(L.member(pantry, i)) end,
 meal-plan)

filter is like the filter-
with function we used on
tables: It keeps list
members on which its
function argument returns
true

Let’s say we want to go shopping for the ingredients we need to
make all three dishes. How would we make such a list?

meal-plan = L.append(pancakes,
 L.append(dumplings, pasta))

shopping-list = L.filter(
 lam(i): not(L.member(pantry, i)) end,
 meal-plan)

member tells us if the
second argument is an
item in the specified list.

››› shopping-list
[list: "egg", "butter", "flour", "sugar", "salt",
 "baking powder", "blueberries", "egg", "pork",
 "salt", "gf soy sauce", "tomatoes", "onion"]

››› shopping-list
[list: "egg", "butter", "flour", "sugar", "salt",
 "baking powder", "blueberries", "egg", "pork",
 "salt", "gf soy sauce", "tomatoes", "onion"]

Let’s say we want to go shopping for the ingredients we need to
make all three dishes. How would we make such a list?

meal-plan = L.append(pancakes,
 L.append(dumplings, pasta))

shopping-list = L.filter(
 lam(i): not(L.member(pantry, i)) end,
 L.distinct(meal-plan))

distinct gives us a list
without the duplicate
elements

What if we want to write a predicate that looks at a
recipe and returns true if it’s gluten-free?

We can add new lists for ingredients containing gluten – and
other dietary concerns:

gluten = [list: "flour", "spaghetti"]  
meat = [list: "chicken", "pork", "beef", "fish"]
dairy = [list: "milk", "butter", "whey"]
eggs = [list: "eggs", "egg noodles"]

fun is-gluten-free(recipe :: List<String>) -> Boolean:
 doc: "Return true if none of the ingredients in a
list contain gluten"
 L.length(
 L.filter(
 lam(i): L.member(gluten, i) end,
 recipe)) == 0
where:
 is-gluten-free(pancakes) is false
 is-gluten-free(dumplings) is true
end

The input is a List, but we know
that each item it contains is a
String. If we’re given a list of
numbers we’ll have a problem!

This is an interesting new type annotation!

fun is-gluten-free(recipe :: List<String>) -> Boolean:
 doc: "Return true if none of the ingredients in a
list contain gluten"
 L.length(
 L.filter(
 lam(i): L.member(gluten, i) end,
 recipe)) == 0
where:
 is-gluten-free(pancakes) is false
 is-gluten-free(dumplings) is true
end

How many elements are in the given list?

Higher-order functions like L.filter – i.e., functions
that take functions as input – are meant to save us
effort.

They capture the similarities among many specific
functions we could write, so we only need to specify
the way those functions would differ.

filter-with captured the pattern of wanting to
filter a table to just the rows that pass some test.

L.filter captures the same pattern for lists.

But what we just saw is another common pattern –
we want to know whether any element passes a
test!

fun is-gluten-free(recipe :: List<String>) -> Boolean:
 doc: "Return true if none of the ingredients in a
list contain gluten"
 not(L.any(lam(i): L.member(gluten, i) end, recipe))
where:
 is-gluten-free(pancakes) is false
 is-gluten-free(dumplings) is true
end

any returns true if its function argument
returns true on any element of the given list.

fun is-vegan(recipe :: List<String>) -> Boolean:
 doc: "Return true if all the ingredients are vegan"
 not(
 L.any(
 lam(i):
 L.member(meat, i) or
 L.member(dairy, i) or
 L.member(eggs, i)
 end,
 recipe))
where:
 is-vegan(pasta) is true
 is-vegan(dumplings) is false
end

Map

What if we want to take a recipe and make it vegan?

Let’s think about what the input and output should
be. We’re starting with the list of ingredients,

[list: "egg", "butter", "flour",
 "sugar", "salt", "baking powder",  
 "blueberries"]

and it should become, say,
[list: "flax", "margarine", "flour",
 "sugar", "salt", "baking powder",  
 "blueberries"]

Sorry, meat-lovers!

We need an operation that produces a list, where
some of the items are different than in the input list.

We can’t do this with member, distinct, or filter.

L.map is similar to the transform-column function
we used with tables.

It takes a function and a list as input and produces a
list where each item is the result of running the
function on the corresponding item of the input list.

fun veganize-ingredient(ingredient :: String) -> String:
 doc: "Change a non-vegan ingredient to its vegan
equivalent"
 if ingredient == "egg":
 "flax"
 else if ingredient == "pork":
 "mushroom"
 else if ingredient == "beef":
 "tofu"
 else if ingredient == "chicken":
 "chick'n"
 else if ingredient == "butter":
 "margarine"
 else:
 ingredient
 end
end

fun veganize-recipe(recipe :: List<String>) -> List<String>:
 doc: "Update a recipe to be vegan"
 L.map(veganize-ingredient, recipe)
where:
 veganize-recipe(pasta) is pasta
 veganize-recipe(dumplings) is
 [list: "flax", "wonton wrappers",
 "mushroom", "garlic", "salt", "soy sauce"]
end

Because veganize-ingredient is just a helper function for
veganize-recipe, we might prefer to define it inside veganize-
recipe:

fun veganize-recipe(recipe :: List<String>) -> List<String>:
 fun veganize-ingredient(ingredient :: String) -> String:
 if ingredient == "egg": "flax"
 else if ingredient == "pork": "mushroom"
 else if ingredient == "beef": "tofu"
 else if ingredient == "chicken": "chick'n"
 else if ingredient == "butter": "margarine"
 else: ingredient
 end
 end
 L.map(veganize-ingredient, recipe)
where:
 veganize-recipe(pasta) is pasta
 veganize-recipe(dumplings) is [list: "flax", "wonton wrappers",
 "mushroom", "garlic", "salt", "soy sauce"]
end

Operation signatures

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

Can we get
more specific?

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

(a -> Boolean), List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

A function that takes an input of
some type – call it a – and returns
a Boolean.

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

(a -> Boolean), List<a> -> List<a>

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

The items in the input and output
lists will be of the same type a,
otherwise we couldn’t run the
predicate function on them.

What about map?
Function, List -> List

What about map?
(a -> b), List -> List

A function that takes an input of
some type – call it a – and returns
an output of type b, which might
be the same as a or might not.
E.g., we might be taking a Number
and converting it to a String.

What about map?
(a -> b), List<a> -> List The input list needs to be made of

as that we can give to that
function.

What about map?
(a -> b), List<a> -> List

The output list will be made of the
bs that the function returned.

For a full list of operations and their signatures, see
the Pyret lists documentation.

https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html

Lists and tables

We’ve seen one way of describing a set of recipes –
as a set of hardcoded lists.

This makes sense when we have a small set of
recipes that doesn’t change often, but we might
want something better.

Another possibility would be to use a table with one column per
ingredient:

recipes1 = table:
 name :: String, spaghetti :: Boolean, milk :: Boolean,
 tomatoes :: Boolean, onions :: Boolean, blueberries :: Boolean,
 garlic :: Boolean, salt :: Boolean
 row: "pasta", true, false, true, true, false, true, true
end

The table would let us make plots and charts using
the operations we know in Pyret

The lists are easier to write and modify

The tables could become sparse if we add more
categories and ingredients

Whether you use tables or lists depends on the data
you have and how you plan to use it.

For the programs we’ve written today, the lists were
sufficient and lightweight, so they were the better
choice.

Other programs might have benefitted from the
table-shaped data.

Another possibility we’ll return to later is combining lists and
tables, e.g.,

recipes2 = table:
 name :: String, ingredients :: List<String>
 row: "pasta", [list: "spaghetti", "tomatoes", "garlic", "onion", "salt"]
end

Acknowledgments

This lecture incorporates material from:
Jonathan Gordon, Vassar College

Phyllis Frankl, Vassar College

Kathi Fisler, Brown University

Doug Woos, Brown University

