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A list is either:
empty

link ({item), <{list))



A list of one item, e.g,,
[ : IIAII ] ,
is really a link between an item and the empty list:

Link("A", empty)



IIAII’ _— 'Link(IIAII’

"A", . 'Link(llAll’
"C", > link("C",
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empty))))



s 1ink (3, 4) a valid list? x



We've seen convenient functions we can use to
work with lists:

> > > lists L

>>> lst — [ : Ilall’ Ilbll’ "C"]

>>> L.map(lam(i): "item-" + i , Lst)
[ + "item-a", "item-b", "item-c"]

>>> L.filter( (1): not(i == "a") , Lst)
[ : IIbll’ IICII]

>>> L.any( (1): 1 == "a" , Lst)

>>> L.all( (1): 1 == "a" , Lst)



But to write our own functions to process a list,
item by item, we need to use the true form of a list
and think recursively.



Recursion is a technique that involves defining a
solution or structure using itself as part of the
definition.



my-sum(lst ::

List<Number>) —-> Number:

3 + my-sum( [
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my-sum(lst :: List<Number>) —> Number:
(List) Ust:

| empty => 0

| link(f, r) == f + my-sum(r)

([ 3, 1, 41) 3 + my-sum( [
my—sum( [ : 1, 4]) 1 + my—-sum( [
my—sum( [ 41]) 4 + my—-sum( [

([ 1)

0



(List) 1st: cases is a special form of
| empty => 0 conditional that we use to ask

| link(f, r) => f + my-sum(r) “which shape of data do |

have?”




Denotes the output

of a function

Marks the
expression to
evaluate if the data

has the shape on
the left.




my-sum(lst :: List<Number>) —> Number:
(List) Ust:

| empty => 0

| link(f, r) == f + my-sum(r)

([ 3, 1, 41) 3 + my-sum( [
my—sum( [ : 1, 4]) 1 + my—-sum( [
my—sum( [ 41]) 4 + my—-sum( [

([ 1)

0



When we call this function, it evaluates as:

my-sum(link(3, link(1, link(4, empty))))
+ my-sum(1link(1, link(4, empty)))

+ 1 + my-sum(link(4, empty))

+ 1 + 4 + my-sum(empty)

+ 1 +4 + 0
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Practice designing recursive functions



The function any-below-10 should return if
any member of the list is less than 10 and
otherwise.



We've already seen a higher-order function that lets
us do this easily:

any-below-10(1lst :: List<Number>) —-> Boolean:
L.any ( (x): x < 10 , Llst)



This is how you should write this function — higher-
order functions like any are great!

We'll implement it using recursion just for practice.
After we've done that, we'll be able to see how any
is actually implemented!



any-below-10(1st :: List<Number>) —> Boolean:

any—-below-10( [ 3, 1, 4]) (3 < 10) (1 < 10) (4 < 10)

any—-below-10( [ : 1, 41) (1 < 10) (4 < 10)
any—-below-10( [ : 4]) (4 < 10)
any—-below-10( [ 1) (:::J

\

What goes here?




any-below-10(1st :: List<Number>) —> Boolean:

any—-below-10( [ 3, 1, 4]) (3 < 10) (1 < 10) (4 < 10)

any—-below-10( [ : 1, 41) (1 < 10) (4 < 10)
any—-below-10( [ : 4]) (4 < 10)
any—below-10( [ : 1)



any-below-10(1st :: List<Number>) —> Boolean:

any—-below-10( [ 3, 1, 4]) (3 < 10) (1 < 10) (4 < 10)
any—-below-10( [ : 1, 4]) (1 < 10) (4 < 10)
any—-below-10( [ 41]) (4 < 10)
any—below-10( [ 1)




any-below-10(1lst ::

any—below-10( [
any—below-10( [
any—below-10( [
any—below-10( [

List<Number>)
1, 4]) (3
1, 4]) (1

4] ) (4
1)

—> Boolean.:
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any-below-10(1lst ::
(List) lst:

empty =>
Llink(fst,

any—below-10( [
any—below-10( [
any—below-10( [
any—below-10( [

rst) => (fst < 10)

List<Number>) —-> Boolean:

=
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any-below-10(rst)

(3 < 10)
(1 < 10)
(4 < 10)

any—be
any—be
any—be

Low—10( |
Low—10( |
Low—10( |

1, 4])
r 4])

1)



Now that we've seen how to write any-below-10,
we can use the same pattern to implement our own
version of any.



my-any(pred, lst :: List) —> Boolean:
(List) 1st:
| empty =>
| link(fst, rst) => pred(fst) my—-any(pred, rst)



my-all(pred, 1st :: List) —> Boolean:
(List) lst:
| empty =>
| link(fst, rst) => pred(fst) my—-all(pred, rst)



Thinking recursively



Any time a problem is structured such that the
solution on larger inputs can be built from the
solution on smaller inputs, recursion is appropriate.



All recursive functions have these two parts:

Base case(s):
What's the simplest case to solve!
Recursive case(s):

What's the relationship between the current case and the answer to

a slightly smaller case!?

You should be calling the function you're defining here; this is
referred to as a recursive call.



recursive-function(lst :: List) —> ...:

(List) Ust:

Base case

| link(f, r) =>
Recursive case ... recursive-function(r)




Each time you make a recursive call, you must make
the input smaller somehow.

If your input is a list, you pass the rest of the list to the recursive call.



link(f— First

link("A",

link("C",

link("B",

empty)))

Rest




>>> Lst = [ + "item 1", "and", "so", "on"]
>>> Lst.first

"1tem 1"

>>> Lst.rest

[ : ||and||’ IISOII’ ||On||]



(List) 1st:
| empty => ...

| lin?, =>

First Rest




What happens if we don’t make the input smaller?



my-sum(lst :: List<Number>) —> Number:
(List) Ust:

| empty => 0

| link(f, r) == f + my-sum(r)

([ 3, 1, 41) 3 + my-sum( [
my—sum( [ : 1, 4]) 1 + my—-sum( [
my—sum( [ 41]) 4 + my—-sum( [

([ 1)

0



my-sum(lst :: List<Number>) —> Number:
(List) 1st:
| empty => 0

| link(f, r) => f + my-sum(1lst) [|Recursive call on the original input list

([ : 3, 1, 4]) 3 + my-sum([ 1, 4])
my—sum{( [ : 1, 4]) 1 + my—-sum( [ : 4] )
my—sum/( [ 4] ) 4 + my-sum( [ : 1)
my—sum( [ 1) 0



When we call this function, it evaluates as:
my—-sum(link(3, link(1, link(4, empty))))
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my—-sum(link(3, link(1, link(4, empty))))

3 + my-sum(link(3, link(1, 1link(4, empty))))

3 + 3 + my-sum(link(3, link(1, 1link(4, empty))))

3 + 3 + 3 + my-sum(link(3, link(1, 1link(4, empty))))

This isn’t going to end well.




When a recursive function never stops calling itself,
it'’s called infinite recursion.



VVrap-up practice



list=len(1lst :: List) —> Number:
: "'Compute the length of a list"
(List) 1st:
| empty => 0
| link(f, r) == 1 + list-len(___ )



Llist-len(lst :: List) —> Number:
: "'Compute the length of a list"
(List) Ust:
| empty => 0
| link(f, r) => 1 + list-len(r)



List-product(lst :: List<Number>) —-> Number:
: "Compute the product of all the numbers in Ulst"
(List) Ust:
| empty => 1

| link(f, r) => x list-product(r)



List-product(lst :: List<Number>) —-> Number:
: "Compute the product of all the numbers in Ulst"
(List) Ust:
| empty => 1
| link(f, r) => f *x list-product(r)



is-member(lst :: List, item) —-> Boolean:
: "Return true 1if 1item 1s a member of Llst"
(List) T1st:
| empty =
| link(f, r) =>
(f == ) (is—member (

—— _—

)



is-member(lst :: List, item) —-> Boolean:
"Return true 1f 1tem 1s a member of Llst"
(List) 1st:
| empty =>
| link(f, r) =>
(f == item) (is—member(r, item)



Final note

Lists, recursion, and cases syntax are not easy
concepts to grasp separately, much less all together
in a short time.

Don't feel frustrated if it takes a little while for these
to make sense. Give yourself time, be sure to
practice working in Pyret, and ask questions.
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