CMPU 101 § 0o4/05 - Problem-Solving and Abstraction

Recursive Functions

13 October 2021

Where are we!?

number-grade

98

100

/4

84

letter-grade

-

_

llAll

llAll

llCll

IIBII

~

””’____————————————b

W,

IIAII)

IIAII)

IICII)

IIBII]

A list is either:
empty

link ({item), <{list))

A list of one item, e.g,,
[: IIAII] ,
is really a link between an item and the empty list:

Link("A", empty)

IIAII’ _— 'Link(IIAII’

"A", . 'Link(llAll’
"C", > link("C",
||B||]) 'Link(llBll’

empty))))

s 1ink (3, 4) a valid list? x

We've seen convenient functions we can use to
work with lists:

> > > lists L

>>> lst — [: Ilall’ Ilbll’ "C"]

>>> L.map(lam(i): "item-" + i , Lst)
[+ "item-a", "item-b", "item-c"]

>>> L.filter((1): not(i == "a") , Lst)
[: IIbll’ IICII]

>>> L.any((1): 1 == "a" , Lst)

>>> L.all((1): 1 == "a" , Lst)

But to write our own functions to process a list,
item by item, we need to use the true form of a list
and think recursively.

Recursion is a technique that involves defining a
solution or structure using itself as part of the
definition.

my-sum(lst ::

List<Number>) —-> Number:

3 + my-sum([
1 + my—-sum([
4 + my-sum([
0

-

= =
~ b b
—_—r e N N’

my-sum(lst :: List<Number>) —> Number:
(List) Ust:

| empty => 0

| link(f, r) == f + my-sum(r)

([3, 1, 41) 3 + my-sum([
my—sum([: 1, 4]) 1 + my—-sum([
my—sum([41]) 4 + my—-sum([

([1)

0

(List) 1st: cases is a special form of
| empty => 0 conditional that we use to ask

| link(f, r) => f + my-sum(r) “which shape of data do |

have?”

Denotes the output

of a function

Marks the
expression to
evaluate if the data

has the shape on
the left.

my-sum(lst :: List<Number>) —> Number:
(List) Ust:

| empty => 0

| link(f, r) == f + my-sum(r)

([3, 1, 41) 3 + my-sum([
my—sum([: 1, 4]) 1 + my—-sum([
my—sum([41]) 4 + my—-sum([

([1)

0

When we call this function, it evaluates as:

my-sum(link(3, link(1, link(4, empty))))
+ my-sum(1link(1, link(4, empty)))

+ 1 + my-sum(link(4, empty))

+ 1 + 4 + my-sum(empty)

+ 1 +4 + 0

w w Ww W

Practice designing recursive functions

The function any-below-10 should return if
any member of the list is less than 10 and
otherwise.

We've already seen a higher-order function that lets
us do this easily:

any-below-10(1lst :: List<Number>) —-> Boolean:
L.any ((x): x < 10 , Llst)

This is how you should write this function — higher-
order functions like any are great!

We'll implement it using recursion just for practice.
After we've done that, we'll be able to see how any
is actually implemented!

any-below-10(1st :: List<Number>) —> Boolean:

any—-below-10([3, 1, 4]) (3 < 10) (1 < 10) (4 < 10)

any—-below-10([: 1, 41) (1 < 10) (4 < 10)
any—-below-10([: 4]) (4 < 10)
any—-below-10([1) (:::J

\

What goes here?

any-below-10(1st :: List<Number>) —> Boolean:

any—-below-10([3, 1, 4]) (3 < 10) (1 < 10) (4 < 10)

any—-below-10([: 1, 41) (1 < 10) (4 < 10)
any—-below-10([: 4]) (4 < 10)
any—below-10([: 1)

any-below-10(1st :: List<Number>) —> Boolean:

any—-below-10([3, 1, 4]) (3 < 10) (1 < 10) (4 < 10)
any—-below-10([: 1, 4]) (1 < 10) (4 < 10)
any—-below-10([41]) (4 < 10)
any—below-10([1)

any-below-10(1lst ::

any—below-10([
any—below-10([
any—below-10([
any—below-10([

List<Number>)
1, 4]) (3
1, 4]) (1

4]) (4
1)

—> Boolean.:

< 10) any-be’
< 10) any-be’
< 10) any-be’

Low—10(|
Low—10(|
Low—10(|

1, 4])
r 4])

1)

any-below-10(1lst ::
(List) lst:

empty =>
Llink(fst,

any—below-10([
any—below-10([
any—below-10([
any—below-10([

rst) => (fst < 10)

List<Number>) —-> Boolean:

=

-

-

any-below-10(rst)

(3 < 10)
(1 < 10)
(4 < 10)

any—be
any—be
any—be

Low—10(|
Low—10(|
Low—10(|

1, 4])
r 4])

1)

Now that we've seen how to write any-below-10,
we can use the same pattern to implement our own
version of any.

my-any(pred, lst :: List) —> Boolean:
(List) 1st:
| empty =>
| link(fst, rst) => pred(fst) my—-any(pred, rst)

my-all(pred, 1st :: List) —> Boolean:
(List) lst:
| empty =>
| link(fst, rst) => pred(fst) my—-all(pred, rst)

Thinking recursively

Any time a problem is structured such that the
solution on larger inputs can be built from the
solution on smaller inputs, recursion is appropriate.

All recursive functions have these two parts:

Base case(s):
What's the simplest case to solve!
Recursive case(s):

What's the relationship between the current case and the answer to

a slightly smaller case!?

You should be calling the function you're defining here; this is
referred to as a recursive call.

recursive-function(lst :: List) —> ...:

(List) Ust:

Base case

| link(f, r) =>
Recursive case ... recursive-function(r)

Each time you make a recursive call, you must make
the input smaller somehow.

If your input is a list, you pass the rest of the list to the recursive call.

link(f— First

link("A",

link("C",

link("B",

empty)))

Rest

>>> Lst = [+ "item 1", "and", "so", "on"]
>>> Lst.first

"1tem 1"

>>> Lst.rest

[: ||and||’ IISOII’ ||On||]

(List) 1st:
| empty => ...

| lin?, =>

First Rest

What happens if we don’t make the input smaller?

my-sum(lst :: List<Number>) —> Number:
(List) Ust:

| empty => 0

| link(f, r) == f + my-sum(r)

([3, 1, 41) 3 + my-sum([
my—sum([: 1, 4]) 1 + my—-sum([
my—sum([41]) 4 + my—-sum([

([1)

0

my-sum(lst :: List<Number>) —> Number:
(List) 1st:
| empty => 0

| link(f, r) => f + my-sum(1lst) [|Recursive call on the original input list

([: 3, 1, 4]) 3 + my-sum([1, 4])
my—sum{([: 1, 4]) 1 + my—-sum([: 4])
my—sum/([4]) 4 + my-sum([: 1)
my—sum([1) 0

When we call this function, it evaluates as:
my—-sum(link(3, link(1, link(4, empty))))

w w Ww W

+

+
+
+

my—-sum(link(3, link(1, link(4, empty))))

3 + my-sum(link(3, link(1, 1link(4, empty))))

3 + 3 + my-sum(link(3, link(1, 1link(4, empty))))

3 + 3 + 3 + my-sum(link(3, link(1, 1link(4, empty))))

This isn’t going to end well.

When a recursive function never stops calling itself,
it'’s called infinite recursion.

VVrap-up practice

list=len(1lst :: List) —> Number:
: "'Compute the length of a list"
(List) 1st:
| empty => 0
| link(f, r) == 1 + list-len(___)

Llist-len(lst :: List) —> Number:
: "'Compute the length of a list"
(List) Ust:
| empty => 0
| link(f, r) => 1 + list-len(r)

List-product(lst :: List<Number>) —-> Number:
: "Compute the product of all the numbers in Ulst"
(List) Ust:
| empty => 1

| link(f, r) => x list-product(r)

List-product(lst :: List<Number>) —-> Number:
: "Compute the product of all the numbers in Ulst"
(List) Ust:
| empty => 1
| link(f, r) => f *x list-product(r)

is-member(lst :: List, item) —-> Boolean:
: "Return true 1if 1item 1s a member of Llst"
(List) T1st:
| empty =
| link(f, r) =>
(f ==) (is—member (

—— _—

)

is-member(lst :: List, item) —-> Boolean:
"Return true 1f 1tem 1s a member of Llst"
(List) 1st:
| empty =>
| link(f, r) =>
(f == item) (is—member(r, item)

Final note

Lists, recursion, and cases syntax are not easy
concepts to grasp separately, much less all together
in a short time.

Don't feel frustrated if it takes a little while for these
to make sense. Give yourself time, be sure to
practice working in Pyret, and ask questions.

Acknowledgments

This lecture incorporates material from:

Jonathan Gordon, Vassar College
Kathi Fisler, Brown University

Doug Woos, Brown University

