
Recursive Functions
13 October 2021

cmpu 101 § 04/05 · Problem-Solving and Abstraction

Where are we?

[list:

 "A",

 "A",

 "C",

 "B"]

A list is either:

empty

link(⟨item⟩, ⟨list⟩)

A list of one item, e.g.,

[list: "A"],

is really a link between an item and the empty list:

link("A", empty)

[list:

 "A",

 "A",

 "C",

 "B"]

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

Is link(3, 4) a valid list?

We’ve seen convenient functions we can use to
work with lists:

››› import lists as L

››› lst = [list: "a", "b", "c"]

››› L.map(lam(i): "item-" + i end, lst) 
[list: "item-a", "item-b", "item-c"]

››› L.filter(lam(i): not(i == "a") end, lst) 
[list: "b", "c"]

››› L.any(lam(i): i == "a" end, lst) 
true

››› L.all(lam(i): i == "a" end, lst) 
false

But to write our own functions to process a list,
item by item, we need to use the true form of a list
and think recursively.

Recursion is a technique that involves defining a
solution or structure using itself as part of the
definition.

fun my-sum(lst :: List<Number>) -> Number:
 ...

  
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end 
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end 
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

cases is a special form of
conditional that we use to ask
“which shape of data do I
have?”

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end 
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

Denotes the output
of a function

Marks the
expression to
evaluate if the data
has the shape on
the left.

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end 
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

When we call this function, it evaluates as:
my-sum(link(3, link(1, link(4, empty))))
3 + my-sum(link(1, link(4, empty)))
3 + 1 + my-sum(link(4, empty))
3 + 1 + 4 + my-sum(empty)
3 + 1 + 4 + 0

Practice designing recursive functions

The function any-below-10 should return true if
any member of the list is less than 10 and false
otherwise.

We’ve already seen a higher-order function that lets
us do this easily:

fun any-below-10(lst :: List<Number>) -> Boolean:
 L.any(lam(x): x < 10 end, lst)
end

This is how you should write this function – higher-
order functions like any are great!

We’ll implement it using recursion just for practice.
After we’ve done that, we’ll be able to see how any
is actually implemented!

fun any-below-10(lst :: List<Number>) -> Boolean:
 ...
where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is ...
end

What goes here?

fun any-below-10(lst :: List<Number>) -> Boolean:
 ...
where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is false
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 ...
where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is false
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 ...
where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
 any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
 any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
 any-below-10([list:]) is false
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 cases (List) lst:
 | empty => false
 | link(fst, rst) => (fst < 10) or any-below-10(rst)
 end
where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
 any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
 any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
 any-below-10([list:]) is false
end

Now that we’ve seen how to write any-below-10,
we can use the same pattern to implement our own
version of any.

fun my-any(pred, lst :: List) -> Boolean:
 cases (List) lst:
 | empty => false
 | link(fst, rst) => pred(fst) or my-any(pred, rst)
 end
end

fun my-all(pred, lst :: List) -> Boolean:
 cases (List) lst:
 | empty => true
 | link(fst, rst) => pred(fst) and my-all(pred, rst)
 end
end

Thinking recursively

Any time a problem is structured such that the
solution on larger inputs can be built from the
solution on smaller inputs, recursion is appropriate.

All recursive functions have these two parts:
Base case(s):

What’s the simplest case to solve?

Recursive case(s):

What’s the relationship between the current case and the answer to
a slightly smaller case?

You should be calling the function you’re defining here; this is
referred to as a recursive call.

fun recursive-function(lst :: List) -> ...:
 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ... recursive-function(r) ...

 end
end

Base case

Recursive case

Each time you make a recursive call, you must make
the input smaller somehow.

If your input is a list, you pass the rest of the list to the recursive call.

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

First

Rest

››› lst = [list: "item 1", "and", "so", "on"]
››› lst.first
"item 1"
››› lst.rest
[list: "and", "so", "on"]

cases (List) lst:
 | empty => ...
 | link(f, r) => ...
end 

First Rest

What happens if we don’t make the input smaller?

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end 
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(lst)
 end 
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

Recursive call on the original input list

When we call this function, it evaluates as:
my-sum(link(3, link(1, link(4, empty))))
3 + my-sum(link(3, link(1, link(4, empty))))
3 + 3 + my-sum(link(3, link(1, link(4, empty))))
3 + 3 + 3 + my-sum(link(3, link(1, link(4, empty))))
3 + 3 + 3 + 3 + my-sum(link(3, link(1, link(4, empty))))
...

This isn’t going to end well.

When a recursive function never stops calling itself,
it’s called infinite recursion.

Wrap-up practice

fun list-len(lst :: List) -> Number:
 doc: "Compute the length of a list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => 1 + list-len(____)
 end
end

fun list-len(lst :: List) -> Number:
 doc: "Compute the length of a list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => 1 + list-len(r)
 end
end

fun list-product(lst :: List<Number>) -> Number:
 doc: "Compute the product of all the numbers in lst"
 cases (List) lst:
 | empty => 1
 | link(f, r) => ____ * list-product(r)
 end
end

fun list-product(lst :: List<Number>) -> Number:
 doc: "Compute the product of all the numbers in lst"
 cases (List) lst:
 | empty => 1
 | link(f, r) => f * list-product(r)
 end
end

fun is-member(lst :: List, item) -> Boolean:
 doc: "Return true if item is a member of lst"
 cases (List) lst:
 | empty => ______
 | link(f, r) =>
 (f == ______) or (is-member(______, ______)
 end
end

fun is-member(lst :: List, item) -> Boolean:
 doc: "Return true if item is a member of lst"
 cases (List) lst:
 | empty => false
 | link(f, r) =>
 (f == item) or (is-member(r, item)
 end
end

Final note

Lists, recursion, and cases syntax are not easy
concepts to grasp separately, much less all together
in a short time.

Don’t feel frustrated if it takes a little while for these
to make sense. Give yourself time, be sure to
practice working in Pyret, and ask questions.

Acknowledgments

This lecture incorporates material from:
Jonathan Gordon, Vassar College

Kathi Fisler, Brown University

Doug Woos, Brown University

