
The Secret Nature of Lists
6 October 2021

cmpu 101 § 1 · Problem-Solving and Abstraction

Where are we?

We’ve been working with tables for the past few
weeks.

Last class we saw a new data type: lists.

A list is like the column of a table – an ordered
collection of items, possibly including duplicates.

table:
 number-grade, letter-grade
 row: 98, "A"
 row: 100, "A"
 row: 74, "C"
 row: 84, "B"
end

A list is like the column of a table – an ordered
collection of items, possibly including duplicates.

table:
 number-grade, letter-grade
 row: 98, "A"
 row: 100, "A"
 row: 74, "C"
 row: 84, "B"
end

A list is like the column of a table – an ordered
collection of items, possibly including duplicates.

table:
 number-grade, letter-grade
 row: 98, "A"
 row: 100, "A"
 row: 74, "C"
 row: 84, "B"
end

A list is like the column of a table – an ordered
collection of items, possibly including duplicates.

table:
 number-grade, letter-grade
 row: 98, "A"
 row: 100, "A"
 row: 74, "C"
 row: 84, "B"
end

[list:

 "A",

 "A",

 "C",

 "B"]

Columns in a table can contain a mix of different
data types, e.g.,

table: grades
 row: 98
 row: 56
 row: 74
 row: "F"
 row: "A"
 row: "B"
end

And so can a list:
[list: 98, 56, 74, "F", "A", "B"]

However, we usually find it easier to work with a
column where every value is of the same kind.

We saw data sanitizer functions that can help us
achieve this.

Additionally, we can annotate the type of data in the
column when we make a table:

table: col :: Number
 row: 1
 row: 2
 row: 3
end

table: col :: String
 row: "a"
 row: "b"
 row: "c"
end

Likewise, we’ll most often have just one type of data
in a list, and we can change how we write the data
type to show that.

For example,
[list: 1, 2, 3] List<Number>
 “list of numbers”

[list: "a", "b", "c"] List<String>
 “list of strings”

When we want to work with lists, we start by
loading the functions for doing so, giving them a
special prefix, L:

import lists as L

We saw some basic functions to ask questions
about lists:

››› l = [list: "a", "b", "c"]
››› L.length(l)
3
››› L.member(l, "a")
true
››› L.member(l, "d")
false

When we wanted to put two lists together, we
could append them like we did with strings:

››› l = [list: "a", "b", "c"]
››› m = [list: "d", "e", "f"]
››› L.append(l, m)
[list: "a", "b", "c", "d", "e", "f"]

And if we had a list with duplicate items, we could
get a list of just the distinct items:

››› l = [list: "a", "b", "c"]
››› uh-oh = L.append(l, l)
››› uh-oh
[list: "a", "b", "c", "a", "b", "c"]
››› L.distinct(uh-oh)
[list: "a", "b", "c"]

Many of the functions we’ve used for working with
tables have analogues that work with lists.

For instance, when we wanted just certain rows in a
table, we used filter-with, giving it the table and a
function that returned true for the rows we want to
keep.

To do the same thing for items in a list, use
L.filter.

››› l = [list: "a", "b", "c"]
››› L.filter(
 lam(i): not(i == "a") end,
 l)
[list: "b", "c"]

››› l = [list: "a", "b", "c"]
››› L.filter(
 lam(i): not(i == "a") end,
 l)
[list: "b", "c"]

This is an anonymous
(i.e., unnamed)
function made using a
lambda expression.

One difference to be aware of:
filter-with(⟨table⟩, ⟨function⟩)

L.filter(⟨function⟩, ⟨list⟩)

When you’re working with
a list, the function
argument comes first.

Often we use L.filter to ask the questions

“Does this function return true for every item in the list?”
L.length(L.filter(function, list)) == L.length(list)

“Does this function return true for any item in the list?”
L.length(L.filter(function, list)) > 0

Often we use L.filter to ask the questions

“Does this function return true for every item in the list?”
L.length(L.filter(function, list)) == L.length(list)

“Does this function return true for any item in the list?”
L.length(L.filter(function, list)) > 0

L.all(function, list)

Often we use L.filter to ask the questions

“Does this function return true for every item in the list?”
L.length(L.filter(function, list)) == L.length(list)

“Does this function return true for any item in the list?”
L.length(L.filter(function, list)) > 0

L.all(function, list)

L.any(function, list)

Data representation

Last class, we saw one way of describing a set of
recipes – as a set of hardcoded lists:

pancakes = [list: "egg", "butter", "flour",
 "sugar", "salt", "baking powder", "blueberries"]
dumplings = [list: "egg", "wonton wrappers",
 "pork", "garlic", "salt", "gf soy sauce"]
pasta = [list: "spaghetti", "tomatoes",
 "garlic", "onion"]

This makes sense when we have a small set of
recipes that doesn’t change often.

Another possibility would be to use a table with one column per
ingredient:

recipes1 = table:
 name :: String, spaghetti :: Boolean, milk :: Boolean,
 tomatoes :: Boolean, onions :: Boolean, blueberries :: Boolean,
 garlic :: Boolean, salt :: Boolean
 row: "pasta", true, false, true, true, false, true, true
end

The table would let us make plots and charts using
the operations we know in Pyret.

The lists are easier to write and modify.

The tables could become sparse if we add more
categories and ingredients.

Whether you use tables or lists depends on the data
you have and how you plan to use it.

For what we‘ve written, the lists were sufficient and
lightweight, so they were the better choice.

Other programs might have benefitted from the
table-shaped data.

Another possibility we’ll return to later is combining lists and
tables, e.g.,

recipes2 = table:
 name :: String, ingredients :: List<String>
 row: "pasta", [list: "spaghetti", "tomatoes", "garlic", "onion",
"salt"]
end

Transforming a list

In addition to the ingredients in the recipes, we encoded some
dietary restrictions:

gluten = [list: "flour", "spaghetti"]
meat = [list: "chicken", "pork", "beef", "fish"]
dairy = [list: "milk", "butter", "whey"]
eggs = [list: "eggs", "egg noodles"]

What if we want to take a recipe and make it vegan?

Let’s think about what the input and output should
be. We’re starting with the recipe’s list of
ingredients,

[list: "egg", "butter", "flour",
 "sugar", "salt", "baking powder",
 "blueberries"]

and it should become, say,
[list: "flax", "margarine", "flour",
 "sugar", "salt", "baking powder",
 "blueberries"]

We need an operation that produces a list, where
some of the items are different than in the input list.

We can’t do this with L.member, L.distinct, or
L.filter.

L.map is similar to the transform-column function
we used with tables.

It takes a function and a list as input and produces a
list where each item is the result of running the
function on the corresponding item of the input list.

fun veganize-ingredient(ingredient :: String) ->
String:
 doc: "Change a non-vegan ingredient to its vegan
equivalent"
 if ingredient == "egg":
 "flax"
 else if ingredient == "pork":
 "mushroom"
 else if ingredient == "beef":
 "tofu"
 else if ingredient == "chicken":
 "chick'n"
 else if ingredient == "butter":
 "margarine"
 else:
 ingredient
 end
end

fun veganize-recipe(recipe :: List<String>) ->
List<String>:
 doc: "Update a recipe to be vegan"
 L.map(veganize-ingredient, recipe)
where:
 veganize-recipe(pasta) is pasta
 veganize-recipe(dumplings) is
 [list: "flax", "wonton wrappers",
 "mushroom", "garlic", "salt", "soy sauce"]
end

Because veganize-ingredient is just a helper function for
veganize-recipe, we might prefer to define it inside veganize-
recipe:

fun veganize-recipe(recipe :: List<String>) -> List<String>:
 fun veganize-ingredient(ingredient :: String) -> String:
 if ingredient == "egg": "flax"
 else if ingredient == "pork": "mushroom"
 else if ingredient == "beef": "tofu"
 else if ingredient == "chicken": "chick'n"
 else if ingredient == "butter": "margarine"
 else: ingredient
 end
 end
 L.map(veganize-ingredient, recipe)
where:
 veganize-recipe(pasta) is pasta
 veganize-recipe(dumplings) is [list: "flax", "wonton wrappers",
 "mushroom", "garlic", "salt", "soy sauce"]
end

List operation signatures

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

Can we get
more specific?

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

Function, List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

(a -> Boolean), List -> List

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

A function that takes an input of
some type – call it a – and returns
a Boolean.

What operations have we seen so far?
L.member

List, ⟨item⟩ -> Boolean

Indicates whether the item is in the list

L.distinct

List -> List

Returns the unique values from input list

L.filter

(a -> Boolean), List<a> -> List<a>

Returns list of items from input list on which function returns true
(in the same order as in the input list)

…

The items in the input and output
lists will be of the same type a,
otherwise we couldn’t run the
predicate function on them.

What about map?
Function, List -> List

What about map?
(a -> b), List -> List

A function that takes an input of
some type – call it a – and returns
an output of type b, which might
be the same as a or might not.
E.g., we might be taking a Number
and converting it to a String.

What about map?
(a -> b), List<a> -> List The input list needs to be made of

as that we can give to that
function.

What about map?
(a -> b), List<a> -> List The output list will be made of the

bs that the function returned.

For a full list of operations and their signatures, see
the Pyret lists documentation.

https://www.pyret.org/docs/latest/lists.html

Designing list functions

How would we write a function that takes a list of
numbers and returns its sum?

fun my-sum(lst :: List<Number>) -> Number:
 ...
end

fun my-sum(lst :: List<Number>) -> Number:
 ...
end

Your first thought should be
whether you can write the body
using one of the list functions we
already know.

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
end

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
 my-sum([list: 1, 4]) is 1 + 4
end

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
 my-sum([list: 1, 4]) is 1 + 4
 my-sum([list: 4]) is 4
end

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
 my-sum([list: 1, 4]) is 1 + 4
 my-sum([list: 4]) is 4
 my-sum([list:]) is ...
end

This is a little weird. There are no numbers left in this list.

We can have a string with no characters in it:
""

And, likewise, we can have a list with no items in it:
[list:]

For these data types, these values are the equivalent
of 0, the number representing no quantity.

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
 my-sum([list: 1, 4]) is 1 + 4
 my-sum([list: 4]) is 4
 my-sum([list:]) is 0
end

If there are no numbers, their sum must be 0!

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

The secret nature of lists

Writing our input as [list: 3, 1, 4] is a lie.

It’s just a shorthand for the real structure of a list.

In its secret heart, Pyret knows there are only two
ways of making a list:

There’s the empty list, empty.

And there’s adding an element to the front of an
existing list using the link function.

When we write an expression like
[list: 1, 2, 3],

Pyret translates it for us into a composition of these
possibilities:

link(3,
 link(1,
 link(4, empty)))

Using the secret

fun my-sum(lst :: List<Number>) -> Number:
 ...
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => ...
 | link(fst, rst) => ...
 end
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

A cases expression is like an if. If
the list is empty, do one thing. If
it's a link, do another thing.

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => ...
 | link(fst, rst) => ...
 end
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(fst, rst) => ...
 end
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(fst, rst) => fst + my-sum(rst)
 end
where:
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list:]) is 0
end

When we call this function, it evaluates as:
my-sum(link(3, link(1, link(4, empty))))
3 + my-sum(link(1, link(4, empty)))
3 + 1 + my-sum(link(4, empty))
3 + 1 + 4 + my-sum(empty)
3 + 1 + 4 + 0

When we call my-sum, the result it returns depends
on other calls to my-sum!

Lecture code:
https://code.pyret.org/editor#share=1cMg6RAjFa9dK4-OQCmLl3Dhktpne1qS0&v=1904b2c

https://code.pyret.org/editor#share=1cMg6RAjFa9dK4-OQCmLl3Dhktpne1qS0&v=1904b2c

Acknowledgments

This lecture incorporates material from:
Kathi Fisler, Brown University

Doug Woos, Brown University

