Big Fish

A function that gets the big fish (> 5 Ibs):

; list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(cond
[(> (first 1) 5)
(cons (first 1) (big (rest 1)))]
[else (big (rest 1))1]1)1))

(check-expect (big "()) '())
(check-expect (big '(7 4 9)) '"(7 9))

Big Fish

Better with 1local:

; list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define big-rest (big (rest 1)))]
(cond
[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

Big Fish

Better with local:

; list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define big-rest (big (rest 1)))]
(cond
[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

Suppose we also need to find huge fish...

Huge Fish

Huge fish (> 10 Ibs):

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (£first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

Huge Fish

Huge fish (> 10 Ibs):

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (£first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

How do you suppose | made this slide?

Huge Fish

Huge fish (> 10 Ibs):

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (£first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

How do you suppose | made this slide?

Cut and Paste!

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) ' ()]
[(cons? 1)
(cond
[(> (first 1) 5)
(cons (first 1) (big (rest 1)))]
[else (big (rest 1))1)1))

&

cut and paste

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) ' ()]
[(cons? 1)
(cond
[(> (first 1) 10)
(cons (first 1) (huge (rest 1)))]
[else (huge (rest 1))]1)1))

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) '()
[(cons? 1)
(cond

[(> (first 1) 5)

(cons (first 1) (big (rest 1)))]

[else (big (rest 1))]1)1))

&

cut and paste

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) ' ()]
[(cons? 1)
(cond
[(> (first 1) 10)
(cons (first 1) (huge (rest 1)))]
[else (huge (rest 1))]1)1))

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) '()
[(cons? 1)
(cond

[(> (first 1) 5)

(cons (first 1) (big (rest 1)))]

[else (big (rest 1))]1)1))

&

cut and paste

; list-of-nums -> list-of-nums
(define (huge 1)
(cond

[(empty? 1) ' ()
[(cons? 1)
(cond

[(> (first 1) 10)
(cons (first 1) (huge (rest 1)))]
[else (huge (rest 1))]1)1))

After cut-and-paste, improvement is twice as hard

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums

(define (big 1)
(cond
[(empty? 1) '()]
[(cons? 1)

(local [(define big-rest (big (rest 1)))]

(cond
[(> (first 1) 5)

(cons (first 1) big-rest)]

[else big-rest]))]))

&

cut and paste

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) ' ()]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

10

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums

(define (big 1)
(cond

[(empty? 1) '()]
[(cons? 1) y
(local [(define st (big (rest 1)))]

(cond
[(> (first 1) 5)

(cons (first 1) big-rest)]

[else big-rest]))]))

&

cut and paste

; list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) ' ()]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

11

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) '()]
[(cons? 1) y
(local [(define &st (big (rest 1)))]1]
(cond
[(> (first 1) 5)

(cons (first 1) big-rest)]
[else big-rest]))]))

; list-of-nums -> list-of-nums
(define (huge 1)
(cond

[(empty? 1) 'O . .
[(cons? 1) a
(local [(definef %t (huge (rest 1)))]

(cond
[(> (first 1) 10)

(cons (first 1) h-rest)]
[else h-rest]))]))

After cut-and-paste, bugs multiply

12

The Trouble With Cut and Paste

; list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) ' ()]
[(cons? 1) y
(local [(define «&st (big (rest 1)))]1]
(cond
[(> (first 1) 5)

(cons (first 1) big-rest)]
[else big-rest]))]))

; list-of-nums -> list-of-nums
(define (huge 1)

(cond
[(empty? 1) 'O , .
[(cons? 1) 7
(local [(define%t (huge (rest 1)))]
(cond

[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

After cut-and-paste, bugs multiply

13

How to Avoid Cut-and-Paste

Start with the original function...

; list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define big-rest (big (rest 1)))]
(cond
[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

14

How to Avoid Cut-and-Paste

...and add arguments for parts that should change

; list-of—-nums num -> list-of-nums
(define (bigger 1 n)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define r (bigger (rest 1) n))]
(cond
[(> (first 1) n)
(cons (first 1) r)]
[else r]))]))

15

How to Avoid Cut-and-Paste

...and add arguments for parts that should change

; list-of—-nums num -> list-of-nums
(define (bigger 1 n)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define r (bigger (rest 1) n))]
(cond
[(> (first 1) n)
(cons (first 1) r)]
[else r]))]))

(define (big 1) (bigger 1 5))
(define (huge 1) (bigger 1 10))

16

Small Fish

Now we want the small fish:

17

Small Fish

Now we want the small fish:

; list-of-nums num -> list-of-nums
(define (smaller 1 n)
(cond
[(empty? 1) ' ()]
[(cons? 1)
(local [(define r (smaller (rest 1) n))]
(cond
[((first 1) n)
(cons (first 1) r)]
[else r]))]))

(define (small 1) (smaller 1 5))

18

Small Fish

Now we want the small fish:

; list-of-nums num -> list-of-nums

(define (smaller 1 n) .
(cond ’b&&e
[(empty? 1) ' ()] 6Q

[(cons? 1)

(local [(define r\&@n@ller (rest 1) n))]

(cond
[(L (flrSthS' n)
(cons st 1) r)]

[elsé,r))1))

(define (small 1) (smaller 1 5))

19

Sized Fish

; list-of-nums num ... -> list-of-nums

(define (sized 1 n COMP)
(cond
[(empty? 1) '()]
[(cons? 1)
(local [(define r
(sized (rest 1) n COMP))]
(cond
[(COMP (first 1) n)
(cons (first 1) r)]
[else r]))]))

(define (bigger 1 n) (sized 1 n >))
(define (smaller 1 n) (sized 1 n <))

20

Sized Fish

; list-of-nums num ... -> list-of-nums

(define (sized 1 n COMP)

(cond

[(empty? 1) '()]

[(cons? 1)

(local [(define r
(sized (rest 1) n COMP))]
(cond
[(COMP (first 1) n)
(cons (first 1) r)]

[else r]))]))

(define (bigger 1 n) (sized 1 n >))
(define (smaller 1 n) (sized 1 n <))

Does this work? What is the signature for sized!

21

Functions as Values

The definition

(define (bigger 1 n)

works because functions are values

(sized 1 n >))

22

Functions as Values

The definition

(define (bigger 1 n)

works because functions are values

« 10 is a num

e #false is abool

(sized 1 n >))

23

Functions as Values

The definition

(define (bigger 1 n)

works because functions are values

« 10 is a num
e #false is abool

* <jsa (num num -> bool)

(sized 1 n >))

24

Functions as Values

The definition
(define (bigger 1 n) (sized 1 n >))

works because functions are values

« 10 is a num
e #false is abool

* <jsa (num num -> bool)

So the signature for sized is

; list-of-nums num (num num -> bool)
; —=> list-of-nums

25

Sized Fish

; list-of-nums num (num num -> bool)
; —=> list-of-nums
(define (sized 1 n COMP)
(cond
[(empty? 1) '"()]
[(cons? 1)
(local [(define r
(sized (rest 1) n COMP))]
(cond
[(COMP (first 1) n)
(cons (first 1) r)]

[else r]))]))

(define (tiny 1) (sized 1 2 <))
(define (medium 1) (sized 1 5 =))

26

Sized Fish

; list-of-nums num (num num -> bool)
; —=> list-of-nums
(define (sized 1 n COMP)
(cond
[(empty? 1) '"()]
[(cons? 1)
(local [(define r
(sized (rest 1) n COMP))]
(cond
[(COMP (first 1) n)
(cons (first 1) r)]

[else r]))]))

How about all fish between 3 and 7 Ibs?

27

Mediumish Fish

; num num -> bool
(define (btw-3-and-7 a ignored-zero)
(and (>= a 3)
(<= a 7)))

(define (mediumish 1) (sized 1 0 btw-3-and-7))

28

Mediumish Fish

; num num -> bool
(define (btw-3-and-7 a ignored-zero)
(and (>= a 3)
(<= a 7)))

(define (mediumish 1) (sized 1 0 btw-3-and-7))

* Programmer-defined functions are values, too

* Note that the signature of btw-3-and-7 matches
the kind expected by sized

29

Mediumish Fish

; num num -> bool
(define (btw-3-and-7 a ignored-zero)
(and (>= a 3)
(<= a 7)))

(define (mediumish 1) (sized 1 0 btw-3-and-7))

* Programmer-defined functions are values, too

* Note that the signature of btw-3-and-7 matches
the kind expected by sized

But the ignored O suggests a simplification of sized...

30

A Generic Number Filter

; (num -> bool) list-of-num -> list-of-num
(define (filter-nums PRED 1)
(cond
[(empty? 1) '"()]
[(cons? 1)
(local [(define r
(filter-nums PRED (rest 1)))]
(cond
[(PRED (first 1))
(cons (first 1) r)]
[else r]))]))

31

A Generic Number Filter

; (num -> bool) list-of-num -> list-of-num
(define (filter-nums PRED 1)
(cond
[(empty? 1) '"()]
[(cons? 1)
(local [(define r
(filter-nums PRED (rest 1)))]
(cond
[(PRED (first 1))
(cons (first 1) r)]
[else r]))]))

(define (btw-3&7 n) (and (>=n 3) (<= n 7)))
(define (mediumish 1) (filter-nums btw-3&7 1))

32

Big and Huge Fish, Again

(define (more-than-5 n)
(> n 35))

(define (big 1)
(filter—-nums more-than-5 1))

(define (more-than-10 n)
(> n 10))
(define (huge 1)
(filter-nums more-than-10 1))

33

Big and Huge Fish, Again

(define (more-than-5 n)
(> n 35))

(define (big 1)
(filter—-nums more-than-5 1))

(define (more-than-10 n)
(> n 10))
(define (huge 1)
(filter-nums more-than-10 1))

The more-than-5 and more-than-10 functions
are really only useful to big and huge

We could make them local to clarify...

34

Big and Huge Fish, Improved

(define (big 1)
(local [(define (more-than-5 n)
(> n 5))]
(filter-nums more-than-5 1)))

(define (huge 1)
(local [(define (more-than-10 n)
(> n 10))]
(filter-nums more-than-10 1)))

35

Big and Huge Fish, Improved

(define (big 1)
(local [(define (more-than-5 n)
(> n 5))]
(filter-nums more-than-5 1)))

(define (huge 1)
(local [(define (more-than-10 n)
(> n 10))]
(filter-nums more-than-10 1)))

Cut and paste alert!

You don’t think | typed that twice, do you!?

36

Big and Huge Fish, Generalized

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> n m))]
(filter—-nums more-than-m 1)))

(define (big 1) (bigger-than 1 5))
(define (huge 1) (bigger-than 1 10))

37

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> nm)]

(filter—-nums more-than-m 1)))
(define (big 1) (bigger-than 1 5))
(big ' (7 4 9))

(huge ' (7 4 9))

38

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> n m))]
(filter—-nums more-than-m 1)))
(define (big 1) (bigger-than 1 5))
(big ' (7 4 9))
(huge ' (7 4 9))

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> n m))]
(filter-nums more-than-m 1)))

kgigger—than (7 4 9) 5)
(huge '(7 4 9))

39

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> nm))]
(filter—-nums more-than-m 1)))

(bigger-than '(7 4 9) 5)
(huge ' (7 4 9))

40

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> n m))]
(filter—-nums more-than-m 1)))

(bigger-than '(7 4 9) 5)
(huge ' (7 4 9))

(local [(define (more-than-m n)
(> n 5))]
(filter—-nums more-than-m '(7 4 9)))
(huge ' (7 4 9))

41

Big Example

(local [(define (more-than-m n)
(>n 5))]
(filter-nums more-than-m ' (7 4 9)))
(huge '(7 4 9))

4?2

Big Example

(local [(define (more-than-m n)
(> n 5))]
(filter—-nums more-than-m '(7 4 9)))
(huge ' (7 4 9))

(define (more-than-m42 n)

(> n 5))
(filter-nums more-than-m42 ' (7 4 9))
(huge ' (7 4 9))

43

Big Example

(define (more-than-m42 n)
(> n 5))

(filter—-nums more-than-m42

(huge '(7 4 9))

'(7 4 9))

44

Big Example

(define (more-than-m42 n)
(> n 5))

(filter—-nums more-than-m42

(huge '(7 4 9))

(define (more-than-m42 n)
(> n 5))

(7 9)

(huge '(7 4 9))

after many steps

'(7 4 9))

45

Big Example

(define (more-than-m42 n)
(> n 5))

(7 9)

(huge '(7 4 9))

46

Big Example

(define (more-than-m42 n)
(> n 5))

(7 9)

(huge ' (7 4 9))

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> nm))]
(filter—-nums more-than-m 1)))

(define (more-than-m42 n)
(> n 5))

(7 9)

(bigger-than '(7 4 9) 10)

47

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> nm))]
(filter—-nums more-than-m 1)))

(define (more-than-m42 n)
(> n 5))

(7 9)

(bigger-than '(7 4 9) 10)

48

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> n m))]
(filter—-nums more-than-m 1)))

(define (more-than-m42 n)
(> n 5))

(7 9)

(bigger-than '(7 4 9) 10)

(define (more-than-m42 n)

(> n 5))
(7 9)
(local [(define (more-than-m n)
(> n 10))]

(filter-nums more-than-m '(7 4 9)))

49

Big Example

(define (more-than-m42 n)

(> n 5))
(7 9)
(local [(define (more-than-m n)
(> n 10))]

(filter-nums more-than-m '(7 4 9)))

50

Big Example

(define (more-than-m42 n)
(> n 5))
(7 9)
(local [(define (more-than-m n)
(> n 10))]
(filter-nums more-than-m '(7 4 9)))

(define (more-than-m42 n)
(> n 5))
(7 9)
(define (more-than-m79 n)
(> n 10))
(filter—-nums more-than-m79 ' (7 4 9))

Etc.

51

Abstraction

* Avoiding cut and paste is abstraction

* No real programming task succeeds without it

52

