
Symbols

A

list-of-sym
 program:

; list-of-sym -> list-of-sym
(define (eat-apples l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define ate-rest (eat-apples (rest l)))]
 (cond

[(symbol=? (first l) 'apple) ate-rest]
[else (cons (first l) ate-rest)]))]))

1

Symbols

A

list-of-sym
 program:

; list-of-sym -> list-of-sym
(define (eat-apples l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define ate-rest (eat-apples (rest l)))]
 (cond

[(symbol=? (first l) 'apple) ate-rest]
[else (cons (first l) ate-rest)]))]))

• How about eat-bananas?

• How about eat-non-apples?

2

Symbols

A

list-of-sym
 program:

; list-of-sym -> list-of-sym
(define (eat-apples l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define ate-rest (eat-apples (rest l)))]
 (cond

[(symbol=? (first l) 'apple) ate-rest]
[else (cons (first l) ate-rest)]))]))

• How about eat-bananas?

• How about eat-non-apples?

We know where this leads...

3

Filtering Symbols

; (sym -> bool) list-of-sym -> list-of-sym
(define (filter-syms PRED l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define r

 (filter-syms PRED (rest l)))]
 (cond

[(PRED (first l))
(cons (first l) r)]

[else r]))]))

4

Filtering Symbols

; (sym -> bool) list-of-sym -> list-of-sym
(define (filter-syms PRED l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define r

 (filter-syms PRED (rest l)))]
 (cond

[(PRED (first l))
(cons (first l) r)]

[else r]))]))

This looks really familiar

5

Last Time: Filtering Numbers

; (num -> bool) list-of-num -> list-of-num
(define (filter-nums PRED l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define r

 (filter-nums PRED (rest l)))]
 (cond

[(PRED (first l))
(cons (first l) r)]

[else r]))]))

6

Last Time: Filtering Numbers

; (num -> bool) list-of-num -> list-of-num
(define (filter-nums PRED l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define r

 (filter-nums PRED (rest l)))]
 (cond

[(PRED (first l))
(cons (first l) r)]

[else r]))]))

How do we avoid cut and paste?

7

Filtering Lists

We know this function will work for both number and symbol lists:

; ...
(define (filter PRED l)
 (cond

[(empty? l) '()]
[(cons? l)
(local [(define r

 (filter PRED (rest l)))]
 (cond

[(PRED (first l))
(cons (first l) r)]

[else r]))]))

But what is its signature?

8

The Signature of Filter

How about this?

(num-OR-sym -> bool) list-of-num-OR-list-of-sym
-> list-of-num-OR-list-of-sym

; A num-OR-sym is either
; - num
; - sym

; A list-of-num-OR-list-of-sym is either
; - list-of-num
; - list-of-sym

9

The Signature of Filter

How about this?

(num-OR-sym -> bool) list-of-num-OR-list-of-sym
-> list-of-num-OR-list-of-sym

This signature is too weak to defne eat-apples

; list-of-sym -> list-of-sym
(define (eat-apples l)
 (filter not-apple? l))

; sym -> bool
(define (not-apple? s)
 (not (symbol=? s 'apple)))

eat-apples
 must return a list-of-sym, but by its signature,

filter
 might return a list-of-num

1�

The Signature of Filter

How about this?

(num-OR-sym -> bool) list-of-num-OR-list-of-sym
-> list-of-num-OR-list-of-sym

This signature is too weak to defne eat-apples

; list-of-sym -> list-of-sym
(define (eat-apples l)
 (filter not-apple? l))

; sym -> bool
(define (not-apple? s)
 (not (symbol=? s 'apple)))

not-apple?
 only works on symbols, but by its signature filter

might give it a num
11

The Signature of Filter

The reason filter works is that if we give it a list-of-sym,
then it returns a list-of-sym

Also, if we give filter a list-of-sym, then it calls PRED with
symbols only

12

The Signature of Filter

The reason filter works is that if we give it a list-of-sym,
then it returns a list-of-sym

Also, if we give filter a list-of-sym, then it calls PRED with
symbols only

A better signature:

((num -> bool) list-of-num
-> list-of-num)

OR
((sym -> bool) list-of-sym
-> list-of-sym)

13

The Signature of Filter

The reason filter works is that if we give it a list-of-sym,
then it returns a list-of-sym

Also, if we give filter a list-of-sym, then it calls PRED with
symbols only

A better signature:

((num -> bool) list-of-num
-> list-of-num)

OR
((sym -> bool) list-of-sym
-> list-of-sym)

But what about a list of images, posns, or snakes?

14

The True Signature of Filter

The real signature is

((X -> bool) list-of-X -> list-of-X)

where X stands for any type

• The caller of filter gets to pick a type for X

• All Xs in the signature must be replaced with the same
type

15

The True Signature of Filter

The real signature is

((X -> bool) list-of-X -> list-of-X)

where X stands for any type

• The caller of filter gets to pick a type for X

• All Xs in the signature must be replaced with the same
type

Data defnitions need type variables, too:

; A list-of-X is either
; - '()
; - (cons X list-of-X)

16

Using Filter

The filter function is so useful that it’s built in

(define (eat-apples l)
 (local [(define (not-apple? s)

 (not (symbol=? s 'apple)))]
 (filter not-apple? l)))

17

Looking for Other Built-In Functions

Recall feed-fish:

; list-of-num -> list-of-num
(define (feed-fish l)
 (cond

[(empty? l) '()]
[else (cons (+ 1 (first l))

(feed-fish (rest l)))]))

Is there a built-in function to help?

18

Looking for Other Built-In Functions

Recall feed-fish:

; list-of-num -> list-of-num
(define (feed-fish l)
 (cond

[(empty? l) '()]
[else (cons (+ 1 (first l))

(feed-fish (rest l)))]))

Is there a built-in function to help?

Yes: map

19

Using Map

(define (map CONV l)
 (cond

[(empty? l) '()]
[else (cons (CONV (first l))

(map CONV (rest l)))]))

; list-of-num -> list-of-num
(define (feed-fish l)
 (local [(define (feed-one n)

 (+ n 1))]
 (map feed-one l)))

; list-of-animal -> list-of-animal
(define (feed-animals l)
 (map feed-animal l))

2�

The Signature for Map

(define (map CONV l)
 (cond

[(empty? l) '()]
[else (cons (CONV (first l))

(map CONV (rest l)))]))

• The l argument must be a list of X

• The CONV argument must accept each X

• If CONV returns a new

X
 each time, then the signature for map is

(X -> X) list-of-X -> list-of-X

21

Posns and Distances

; list-of-posn -> list-of-num
(define (distances l)
 (cond

[(empty? l) '()]
[(cons? l) (cons (distance-to-0 (first l))

(distances (rest l)))]))

22

Posns and Distances

; list-of-posn -> list-of-num
(define (distances l)
 (cond

[(empty? l) '()]
[(cons? l) (cons (distance-to-0 (first l))

(distances (rest l)))]))

The distances function looks just like map, except
that distances-to-0 is

posn -> num

not

posn -> posn

23

The True Signature of Map

Despite the signature mismatch, this works:

(define (distances l)
 (map distance-to-0 l))

24

The True Signature of Map

Despite the signature mismatch, this works:

(define (distances l)
 (map distance-to-0 l))

The true signature of map is

(X -> Y) list-of-X -> list-of-Y

The caller gets to pick both X and Y independently

25

More Uses of Map

; list-of-posn -> list-of-posn
(define (rsvp l)
 ; replaces 4 lines:
 (map flip-posn l))

; posn -> posn
....

26

More Uses of Map

; list-of-num -> list-of-num
(define (align-bricks lon)
 ; replaces 4 lines:
 (map round lon))

27

More Uses of Map

; list-of-car -> list-of-car
(define (rob-train l)
 ; replaces 4 lines:
 (map rob-car l))

; car -> car
...

28

Folding a List

How about sum?

list-of-num -> num

Doesn’t return a list, so neither filter nor map help

29

Folding a List

How about sum?

list-of-num -> num

Doesn’t return a list, so neither filter nor map help

Abstracting over sum and product leads to combine-nums:

; list-of-num num (num num -> num) -> num
(define (combine-nums l base-n COMB)
 (cond

[(empty? l) base-n]
[(cons? l)
(COMB
(first l)
(combine-nums (rest l) base-n COMB))]))

3�

The Foldr Function

; (X Y -> Y) Y list-of-X -> Y
(define (foldr COMB base l)
 (cond

[(empty? l) base]
[(cons? l)
(COMB (first l)

(foldr COMB base (rest l)))]))

31

The Foldr Function

; (X Y -> Y) Y list-of-X -> Y
(define (foldr COMB base l)
 (cond

[(empty? l) base]
[(cons? l)
(COMB (first l)

(foldr COMB base (rest l)))]))

The sum and product functions become trivial:

(define (sum l) (foldr + 0 l))
(define (product l) (foldr * 1 l))

32

The Foldr Function

; (X Y -> Y) Y list-of-X -> Y
(define (foldr COMB base l)
 (cond

[(empty? l) base]
[(cons? l)
(COMB (first l)

(foldr COMB base (rest l)))]))

; list-of-posn -> num
(define (total-distance l)
 (local [(define (add-distance p n)

 (+ (distance-to-0 p) n))]
 (foldr add-distance 0 l)))

33

The Foldr Function

; (X Y -> Y) Y list-of-X -> Y
(define (foldr COMB base l)
 (cond

[(empty? l) base]
[(cons? l)
(COMB (first l)

(foldr COMB base (rest l)))]))

In fact,

(define (map f l)
 (local [(define (comb i r)

 (cons (f i) r))]
 (foldr comb '() l)))

34

The Foldr Function

; (X Y -> Y) Y list-of-X -> Y
(define (foldr COMB base l)
 (cond

[(empty? l) base]
[(cons? l)
(COMB (first l)

(foldr COMB base (rest l)))]))

Yes, filter too:

(define (filter f l)
 (local [(define (check i r)

 (cond
[(f i) (cons i r)]
[else r]))]

 (foldr check '() l)))
35

The Source of Foldr

How can foldr be so powerful?

36

The Source of Foldr

Template:

(define (func-for-loX l)
 (cond

[(empty? l) ...]
[(cons? l) ... (first l)
... (func-for-loX (rest l)) ...]))

Fold:

(define (foldr COMB base l)
 (cond

[(empty? l) base]
[(cons? l)
(COMB (first l)

(foldr COMB base (rest l)))]))

37

Other Built-In List Functions

More specializations of foldr:

ormap : (X -> bool) list-of-X -> bool

andmap : (X -> bool) list-of-X -> bool

Examples:

; list-of-sym -> bool
(define (got-milk? l)
 (local [(define (is-milk? s)

 (symbol=? s 'milk))]
 (ormap is-milk? l)))

; list-of-grade -> bool
(define (all-passed? l)
 (andmap passing-grade? l))

38

What about Non-Lists?

Since it’s based on the template, the concept of fold is general

; (sym num sym Z Z -> Z) Z ftn -> Z
(define (fold-ftn COMB base ftn)
 (cond

[(empty? ftn) base]
[(child? ftn)
(COMB (child-name ftn) (child-date ftn) (child-eyes ftn)

(fold-ftn COMB BASE (child-father ftn))
(fold-ftn COMB BASE (child-mother ftn)))]))

(define (count-persons ftn)
 (local [(define (add name date color c-f c-m)

 (+ 1 c-f c-m))]
 (fold-ftn add 0 ftn)))

(define (in-family? who ftn)
 (local [(define (here? name date color in-f? in-m?)

 (or (symbol=? name who) in-f? in-m?))]
 (fold-ftn here? #false ftn)))

39

