
Max of a List

Implement the function

max-item
 which returns the

biggest number in a list of numbers

1

Data and Signature

Data: list-of-num, obviously

Signature:

; list-of-num -> num

2

Examples

(check-expect (max-item '(2 7 5)) 7)

3

Examples

(check-expect (max-item '(2 7 5)) 7)

(check-expect (max-item '()) ...)

4

Examples

(check-expect (max-item '(2 7 5)) 7)

(check-expect (max-item '()) ...)

Problem: max-item makes no sense on an empty list

5

Data and Signature, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)

6

Data and Signature, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)

Signature:

; nonempty-list-of-num -> num

7

Examples, Again

(check-expect (max-item '(2 7 5)) 7)

(check-expect (max-item '(2)) 2)

8

Implementation

No existing functions on non-empty lists, so start with
the template

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)

9

Implementation

No existing functions on non-empty lists, so start with
the template

; A nonempty-list-of-num is either
; - (cons num '())
; - (cons num nonempty-list-of-num)

(define (max-item nel)
 (cond

[(empty? (rest nel)) ... (first nel) ...]
[else
... (first nel)
... (max-item (rest nel)) ...]))

1�

Implementation Complete

(define (max-item nel)
 (cond

[(empty? (rest nel)) (first nel)]
[else
(cond
[(> (first nel) (max-item (rest nel)))
(first nel)]

[else
(max-item (rest nel))])]))

11

Test

(check-expect (max-item '(2)) 2)

works fne

12

Test

(check-expect (max-item '(2)) 2)

works fne

(check-expect
(max-item '(1 2 3 4 5 6 7 8 9 10))
10)

works fne

13

Test

(check-expect (max-item '(2)) 2)

works fne

(check-expect
(max-item '(1 2 3 4 5 6 7 8 9 10))
10)

works fne

(check-expect
(max-item '(1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30))

30)

answer never appears!
14

The Speed of max-item

Somewhere around 20 items, the max-item function
starts to take way too long

15

The Speed of max-item

Somewhere around 20 items, the max-item function
starts to take way too long

Even if you buy a computer that’s 10 times faster, the
problem shows up with about 23 items...

16

The Speed of max-item

Somewhere around 20 items, the max-item function
starts to take way too long

Even if you buy a computer that’s 10 times faster, the
problem shows up with about 23 items...

How long does a program take to run?

17

Counting Steps

How long does

(+ 1 (* 6 7))

take to execute?

18

Counting Steps

How long does

(+ 1 (* 6 7))

take to execute?

Computer speeds differ in “real time,” but we can count
steps:

(+ 1 (* 6 7))
 →

(+ 1 42)
 →

43

So, evaluation takes 2 steps

19

Steps for max-item and 1 Element

How long does this expression take?

(max-item '(2))

2�

Steps for max-item and 1 Element

How long does this expression take?

(max-item '(2))

(max-item '(2))

→ (cond [(empty? (rest '(2))) (first '(2))] ...)

→ (cond [(empty? '()) (first '(2))] ...)

→ (cond [true (first '(2))] ...)

→ (first '(2))

→ 2

5 steps — and any list with one item will take fve steps

21

Steps for max-item and 2 Elements

How long does this expression take?

(max-item '(2 1))

22

Steps for max-item and 2 Elements

How long does this expression take?

(max-item '(2 1))

(max-item '(2 1))

→ (cond [(empty? (rest '(2 1))) (first '(2 1))] [else ...])

→ (cond [(empty? '(1)) (first '(2 1))] [else ...])

→ (cond [false (first '(2 1))] [else ...])

→ (cond [else (cond [(> (first '(2 1)) ...) ...] [else ...])])

→ (cond [(> (first '(2 1)) (max-item (rest '(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item (rest '(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item '(1))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 2 1) (first '(2 1))] [else ...])

→ (first '(2 1))

→ 2

23

Steps for max-item and 2 Elements

How long does this expression take?

(max-item '(2 1))

(max-item '(2 1))

→ (cond [(empty? (rest '(2 1))) (first '(2 1))] [else ...])

→ (cond [(empty? '(1)) (first '(2 1))] [else ...])

→ (cond [false (first '(2 1))] [else ...])

→ (cond [else (cond [(> (first '(2 1)) ...) ...] [else ...])])

→ (cond [(> (first '(2 1)) (max-item (rest '(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item (rest '(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item '(1))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 2 1) (first '(2 1))] [else ...])

→ (first '(2 1))

→ 2

14 steps — where 5 came from the recursive call

24

Steps for max-item and 2 Elements

How long does this expression take?

(max-item '(2 1))

(max-item '(2 1))

→ (cond [(empty? (rest '(2 1))) (first '(2 1))] [else ...])

→ (cond [(empty? '(1)) (first '(2 1))] [else ...])

→ (cond [false (first '(2 1))] [else ...])

→ (cond [else (cond [(> (first '(2 1)) ...) ...] [else ...])])

→ (cond [(> (first '(2 1)) (max-item (rest '(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item (rest '(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item '(1))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 2 1) (first '(2 1))] [else ...])

→ (first '(2 1))

→ 2

14 steps — where 5 came from the recursive call

Are all 2-element lists the same? 25

Steps for max-item and 2 Elements

(max-item '(1 2))

26

Steps for max-item and 2 Elements

(max-item '(1 2))

(max-item '(1 2))

→ (cond [(empty? (rest '(1 2))) (first '(1 2))] [else ...])

→ (cond [(empty? '(2)) (first '(1 2))] [else ...])

→ (cond [false (first '(1 2))] [else ...])

→ (cond [else (cond [(> (first '(1 2)) ...) ...] [else ...])])

→ (cond [(> (first '(1 2)) (max-item (rest '(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item (rest '(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item '(2))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 1 2) ...] [else ...])

→ (cond [else (max-item (rest '(1 2)))])

→ (max-item (rest '(1 2)))

→ (max-item '(2))

→ ... → ... → ... → ...

→ 2

27

Steps for max-item and 2 Elements

(max-item '(1 2))

(max-item '(1 2))

→ (cond [(empty? (rest '(1 2))) (first '(1 2))] [else ...])

→ (cond [(empty? '(2)) (first '(1 2))] [else ...])

→ (cond [false (first '(1 2))] [else ...])

→ (cond [else (cond [(> (first '(1 2)) ...) ...] [else ...])])

→ (cond [(> (first '(1 2)) (max-item (rest '(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item (rest '(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item '(2))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 1 2) ...] [else ...])

→ (cond [else (max-item (rest '(1 2)))])

→ (max-item (rest '(1 2)))

→ (max-item '(2))

→ ... → ... → ... → ...

→ 2

20 steps — where 10 came from two recursive calls
28

Steps for max-item and N Elements

In the worst case, the step count T for an n-element list
passed to max-item is

T(n) = 10 + 2T(n-1)

29

Steps for max-item and N Elements

In the worst case, the step count T for an n-element list
passed to max-item is

T(n) = 10 + 2T(n-1)

T(1) = 5
T(2) = 10 + 2T(1) = 20
T(3) = 10 + 2T(2) = 50
T(4) = 10 + 2T(3) = 110
T(5) = 10 + 2T(4) = 230
...

3�

Steps for max-item and N Elements

In the worst case, the step count T for an n-element list
passed to max-item is

T(n) = 10 + 2T(n-1)

T(1) = 5
T(2) = 10 + 2T(1) = 20
T(3) = 10 + 2T(2) = 50
T(4) = 10 + 2T(3) = 110
T(5) = 10 + 2T(4) = 230
...

• In general, T(n) > 2n

• Note that 230 is 1,073,741,824 — which is why our last
test never produced a result

31

Repairing max-item

In the case of max-item, the problem is easily fxed with local

(define (max-item nel)
 (cond

[(empty? (rest nel)) (first nel)]
[else
(local [(define r (max-item (rest nel)))]
 (cond

[(> (first nel) r) (first nel)]
[else r]))]))

With this defnition, there’s always one recursive call

(max-item '(1 2))
 takes 17 steps

32

Steps for new max-item and N Elements

In the worst case, now, the step count T for an
n-element list passed to max-item is

T(n) = 12 + T(n-1)

33

Steps for new max-item and N Elements

In the worst case, now, the step count T for an
n-element list passed to max-item is

T(n) = 12 + T(n-1)

T(1) = 5
T(2) = 12 + T(1) = 17
T(3) = 12 + T(2) = 29
T(4) = 12 + T(3) = 41
T(5) = 12 + T(4) = 53
...

34

Steps for new max-item and N Elements

In the worst case, now, the step count T for an
n-element list passed to max-item is

T(n) = 12 + T(n-1)

T(1) = 5
T(2) = 12 + T(1) = 17
T(3) = 12 + T(2) = 29
T(4) = 12 + T(3) = 41
T(5) = 12 + T(4) = 53
...

• In general, T(n) = 5 + 12(n-1)

• So our last test takes only 343 steps

35

Using Local to Reduce Complexity

Before, we used local to either make the code nicer
or to support abstraction

Now we’re using local to avoid redundant
calculations, which avoids evaluation complexity

Fortunately, these reasons reinforce each other

Where a value is defnitely computed and possibly
computed multiple times, always give it a name and
compute it once

36

Sorting

We once wrote a sort-list function:

; list-of-num -> list-of-num
(define (sort-list l)
 (cond

[(empty? l) '()]
[(cons? l) (insert (first l) (sort-list (rest l)))]))

37

Sorting

We once wrote a sort-list function:

; list-of-num -> list-of-num
(define (sort-list l)
 (cond

[(empty? l) '()]
[(cons? l) (insert (first l) (sort-list (rest l)))]))

How long does it take to sort a list of n numbers?

38

Sorting

We once wrote a sort-list function:

; list-of-num -> list-of-num
(define (sort-list l)
 (cond

[(empty? l) '()]
[(cons? l) (insert (first l) (sort-list (rest l)))]))

How long does it take to sort a list of n numbers?

We have only one recursive call to sort-list, so it doesn’t have
the same problem as before...

39

Insertion Sort

... but what about insert?

; list-of-num -> list-of-num
(define (sort-list l)
 (cond

[(empty? l) '()]
[(cons? l) (insert (first l) (sort-list (rest l)))]))

; num list-of-num -> list-of-num
(define (insert n l)
 (cond

[(empty? l) (list n)]
[(cons? l)
(cond
[(< n (first l)) (cons n l)]
[else (cons (first l) (insert n (rest l)))])]))

4�

Insertion Sort

... but what about insert?

; list-of-num -> list-of-num
(define (sort-list l)
 (cond

[(empty? l) '()]
[(cons? l) (insert (first l) (sort-list (rest l)))]))

; num list-of-num -> list-of-num
(define (insert n l)
 (cond

[(empty? l) (list n)]
[(cons? l)
(cond
[(< n (first l)) (cons n l)]
[else (cons (first l) (insert n (rest l)))])]))

On each iteration of sort-list, there’s a call to sort-list
and a call to insert

41

Insert Time

insert
 itself is like the repaired max-item:

; num list-of-num -> list-of-num
(define (insert n l)
 (cond

[(empty? l) (list n)]
[(cons? l)
(cond
[(< n (first l)) (cons n l)]
[else (cons (first l) (insert n (rest l)))])]))

In the worst case, insert into a list of size n takes k1 + k2n

The variables k1 and k2 stand for some constant

42

Insertion Sort Time

Given that the time for insert is k1 + k2n...

; list-of-num -> list-of-num
(define (sort-list l)
 (cond

[(empty? l) '()]
[(cons? l) (insert (first l) (sort-list (rest l)))]))

The time for sort-list is defned by

T(0) = k3
T(n) = k4 + T(n-1) + k1 + k2n

43

Insertion Sort Time

T(0) = k3
T(n) = k4 + T(n-1) + k1 + k2n

Even if each k were only 1:

T(0) = 1
T(1) = 4
T(2) = 8
T(2) = 13
T(3) = 19
...

• In the long run, T(n) is a lot like n2

• This is a lot better than 2n — but sorting a list of
10,000 items takes more than 100,000,000 steps

44

Sorting Algorithms

• The list-of-num template leads to the
insertion sort algorithm

It’s not practical for large lists

• Algorithms such as quick sort and merge sort are
faster

45

Merge Sort
(define (merge-sort l)
 (cond

[(or (empty? l) (empty? (rest l))) l]
[else
(local [(define a-half (even-items l))

(define b-half (odd-items l))]
 (merge-lists

(merge-sort a-half)
(merge-sort b-half)))]))

• even-items and odd-items each take k5 + k6n steps

• merge-lists takes k7 + k8n steps

• So, for merge-sort:

T(0) = k9
T(1) = k10
T(n) = k11 + 2T(n/2) + 2k5 + 2k6n + k7 + k8n

46

Merge Sort Time

Simplify by collapsing constants:

T(n) = k12 + 2T(n/2) + k13n

Setting constants to 1:
...
T(5) = 21
T(6) = 27
T(7) = 33
T(8) = 39
T(9) = 46
...

In the long run, T(n) is a lot like nlog2n

• Sorting a list of 10,000 items takes something like 100,000 steps
(which is 1,000 times faster than insertion sort)

47

The Cost of Computation

The study of execution time is called algorithm analysis, and the
theoretical bound for a given problem is the subject of
complexity theory

Practical points:

1. Use local to avoid redundant computations

Something you can always do to tame evaluation

2. Algorithms like merge-sort are in textbooks

You mostly learn them, not invent them

48

The Cost of Computation

The study of execution time is called algorithm analysis, and the
theoretical bound for a given problem is the subject of
complexity theory

Practical points:

1. Use local to avoid redundant computations

Something you can always do to tame evaluation

2. Algorithms like merge-sort are in textbooks

You mostly learn them, not invent them

Other courses teach you more about the second category

49

