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Recap: Conditionals in Racket

(cond
[question answer]
...
[question answer])

• Any number of cond “lines”

• Each line has one question expression and one answer
expression

(define (absolute x)
  (cond

[(> x 0) x]
[else (- x)]))

(absolute 10)
 → 

10

(absolute -7)
 → 

7
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Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer
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Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

Example:

(+ 1 (cond
[#true 1]
[#false 0]))

→ (+ 1 1) → 2
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Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

Example:

(- 1 (cond
[#true 0]
[(< 10 12) 10]
[(>= 10 12) 12]))

→ (- 1 0) → 1
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Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

Example:

(* 1 (cond
[#true 0]))

→ (* 1 0) → 0
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Evaluation Rules for cond

First question is literally #false

(cond
[#false answer]
[question answer]
...
[question answer])

→

(cond
[question answer]
...
[question answer])

• Throw away the frst line
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Evaluation Rules for cond

First question is literally #false

(cond
[#false answer]
[question answer]
...
[question answer])

→

(cond
[question answer]
...
[question answer])

• Throw away the frst line

Example:

(+ 1 (cond
[#false 1]
[#true 17]))

→ (+ 1 (cond
[#true 17]))

→ (+ 1 17) → 18
8



Evaluation Rules for cond

First question isn’t a value, yet

(cond
[question answer]
...
[question answer])

→

(cond
[nextques answer]
...
[question answer])

where question → 

nextques

• Evaluate frst question as sub-expression
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Evaluation Rules for cond

First question isn’t a value, yet

(cond
[question answer]
...
[question answer])

→

(cond
[nextques answer]
...
[question answer])

where question → 

nextques

• Evaluate frst question as sub-expression

Example:

(+ 1 (cond
[(< 1 2) 5]
[else 8]))

→ (+ 1 (cond
[#true 5]
[else 8]))

→ (+ 1 5) → 6 1�



Evaluation Rules for cond

No true answers

(cond) → error

Just an else

(cond
[else answer]) → answer

11



Evaluation Rules for 

cond

Design Recipe with 

cond

Helper Functions and Reuse

Compound Data

12



Design Recipe I

Data

• Understand the input data: num, bool, string, or image

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Body

• The most creative step: implement the function body

Test

• Run the examples
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Examples

When the problem statement divides the input into several
categories, test each one
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Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

0

15



Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

0

(check-expect (line-part 0) "zero")
(check-expect (line-part -3) "left")
(check-expect (line-part 3) "right")
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Design Recipe I

Data

• Understand the input data: num, bool, string, or image

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Body

• The most creative step: implement the function body

Test

• Run the examples
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Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category
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Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line
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Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

Three cases, so three lines: (define (line-part n)
  (cond

[(= n 0) ...]
[(< n 0) ...]
[(> n 0) ...]))
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Designing Programs

Design recipe

• As outlined last lecture
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Designing Programs

Design recipe

• As outlined last lecture

Helper functions and reuse

• Writing writing a function, consider whether existing
functions help

Example: insert-at-middle uses middle

• Look for functions that you wish you had written

Example: same-person-maybe-disguised?
needs wearing-beard?

23



Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b) ...)
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b) ...)

 

(check-expect (bigger-image?  ) #true)
(check-expect (bigger-image?  ) #false)
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b)
  (> (* (image-width a) (image-height a))

(* (image-width b) (image-height b))))
 

(check-expect (bigger-image?  ) #true)
(check-expect (bigger-image?  ) #false)
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b)
  (> (image-size a) (image-size b)))

 

(check-expect (bigger-image?  ) #true)
(check-expect (bigger-image?  ) #false)
 

Wish list: image-size
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Another Example

Write the function 

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b)
  (> (image-size a) (image-size b)))

 

(check-expect (bigger-image?  ) #true)
(check-expect (bigger-image?  ) #false)
 

Wish list: image-size

Fullfll wishes by applying the recipe again
(exercise for the reader)
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Reuse

We should be able to use bigger-image? to write
the max-image function
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Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b) ...)
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Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b) ...)

 

(check-expect (max-image  ) )
(check-expect (max-image  ) )
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Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b)
  ... (bigger-image? a b) ...)

 

(check-expect (max-image  ) )
(check-expect (max-image  ) )
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Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b)
  (cond

[(bigger-image? a b) a]
[else b]))

 

(check-expect (max-image  ) )
(check-expect (max-image  ) )
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Positions

• A 

posn
 is

 

(make-posn X Y)

where X is a num and Y is a num
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Positions

• A 

posn
 is

 

(make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)
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Positions

• A 

posn
 is

 

(make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)

A 

posn
 is a value, just like a number, symbol, or image
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posn-x and posn-y

The posn-x and posn-y operators extract numbers
from a posn:

(posn-x (make-posn 1 2))
 → 

1

(posn-y (make-posn 1 2))
 → 

2
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posn-x and posn-y

The posn-x and posn-y operators extract numbers
from a posn:

(posn-x (make-posn 1 2))
 → 

1

(posn-y (make-posn 1 2))
 → 

2

• General evaluation rules for any values X and Y:

(posn-x (make-posn X Y))
 → 

X

(posn-y (make-posn X Y))
 → 

Y
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Positions and Values

Is (make-posn 100 200) a value?
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Positions and Values

Is (make-posn 100 200) a value?

Yes.

A 

posn
 is

 

(make-posn X Y)

where X is a num and Y is a num
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Positions and Values

Is (make-posn (+ 1 2) 200) a value?
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Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.
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Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y)
 → 

(make-posn Z Y)
when X → 

Z

(make-posn X Y)
 → 

(make-posn X Z)
when Y → 

Z
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Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y)
 → 

(make-posn Z Y)
when X → 

Z

(make-posn X Y)
 → 

(make-posn X Z)
when Y → 

Z

Example:

(make-posn (+ 1 2) 200)
 →

(make-posn 3 200)
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More Examples

Try these in DrRacket’s stepper:

(make-posn (+ 1 2) (+ 3 4))

(posn-x (make-posn (+ 1 2) (+ 3 4)))

; posn -> num
(define (pixels-from-corner p)
  (+ (posn-x p) (posn-y p)))
(pixels-from-corner (make-posn 1 2))

; posn -> posn
(define (flip p)
  (make-posn (posn-y p) (posn-x p)))
(flip (make-posn 1 2))
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