
Evaluation Rules for

cond

Design Recipe with

cond

Helper Functions and Reuse

Compound Data

1

Recap: Conditionals in Racket

(cond
[question answer]
...
[question answer])

• Any number of cond “lines”

• Each line has one question expression and one answer
expression

(define (absolute x)
 (cond

[(> x 0) x]
[else (- x)]))

(absolute 10)
 →

10

(absolute -7)
 →

7

2

Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

3

Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

Example:

(+ 1 (cond
[#true 1]
[#false 0]))

→ (+ 1 1) → 2

4

Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

Example:

(- 1 (cond
[#true 0]
[(< 10 12) 10]
[(>= 10 12) 12]))

→ (- 1 0) → 1

5

Evaluation Rules for cond

First question is literally #true or else

(cond
[#true answer]
...
[question answer])

→ answer

• Keep only the frst answer

Example:

(* 1 (cond
[#true 0]))

→ (* 1 0) → 0

6

Evaluation Rules for cond

First question is literally #false

(cond
[#false answer]
[question answer]
...
[question answer])

→

(cond
[question answer]
...
[question answer])

• Throw away the frst line

7

Evaluation Rules for cond

First question is literally #false

(cond
[#false answer]
[question answer]
...
[question answer])

→

(cond
[question answer]
...
[question answer])

• Throw away the frst line

Example:

(+ 1 (cond
[#false 1]
[#true 17]))

→ (+ 1 (cond
[#true 17]))

→ (+ 1 17) → 18
8

Evaluation Rules for cond

First question isn’t a value, yet

(cond
[question answer]
...
[question answer])

→

(cond
[nextques answer]
...
[question answer])

where question →

nextques

• Evaluate frst question as sub-expression

9

Evaluation Rules for cond

First question isn’t a value, yet

(cond
[question answer]
...
[question answer])

→

(cond
[nextques answer]
...
[question answer])

where question →

nextques

• Evaluate frst question as sub-expression

Example:

(+ 1 (cond
[(< 1 2) 5]
[else 8]))

→ (+ 1 (cond
[#true 5]
[else 8]))

→ (+ 1 5) → 6 1�

Evaluation Rules for cond

No true answers

(cond) → error

Just an else

(cond
[else answer]) → answer

11

Evaluation Rules for

cond

Design Recipe with

cond

Helper Functions and Reuse

Compound Data

12

Design Recipe I

Data

• Understand the input data: num, bool, string, or image

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Body

• The most creative step: implement the function body

Test

• Run the examples

13

Examples

When the problem statement divides the input into several
categories, test each one

14

Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

0

15

Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

0

(check-expect (line-part 0) "zero")
(check-expect (line-part -3) "left")
(check-expect (line-part 3) "right")

16

Design Recipe I

Data

• Understand the input data: num, bool, string, or image

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Body

• The most creative step: implement the function body

Test

• Run the examples

17

Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

18

Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

19

Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

Example:

Write the function line-part that determines whether

a number is on zero, to the left, or to the right on a number line

Three cases, so three lines: (define (line-part n)
 (cond

[(= n 0) ...]
[(< n 0) ...]
[(> n 0) ...]))

2�

Evaluation Rules for

cond

Design Recipe with

cond

Helper Functions and Reuse

Compound Data

21

Designing Programs

Design recipe

• As outlined last lecture

22

Designing Programs

Design recipe

• As outlined last lecture

Helper functions and reuse

• Writing writing a function, consider whether existing
functions help

Example: insert-at-middle uses middle

• Look for functions that you wish you had written

Example: same-person-maybe-disguised?
needs wearing-beard?

23

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

24

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool

25

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b

26

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b) ...)

27

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b) ...)

(check-expect (bigger-image?) #true)
(check-expect (bigger-image?) #false)

28

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b)
 (> (* (image-width a) (image-height a))

(* (image-width b) (image-height b))))

(check-expect (bigger-image?) #true)
(check-expect (bigger-image?) #false)

29

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b)
 (> (image-size a) (image-size b)))

(check-expect (bigger-image?) #true)
(check-expect (bigger-image?) #false)

Wish list: image-size

3�

Another Example

Write the function

bigger-image?
 which checks

whether one image has more pixels than a second image

; image image -> bool
; Returns true if a has more pixels than b
(define (bigger-image? a b)
 (> (image-size a) (image-size b)))

(check-expect (bigger-image?) #true)
(check-expect (bigger-image?) #false)

Wish list: image-size

Fullfll wishes by applying the recipe again
(exercise for the reader)

31

Reuse

We should be able to use bigger-image? to write
the max-image function

32

Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b) ...)

33

Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b) ...)

(check-expect (max-image))
(check-expect (max-image))

34

Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b)
 ... (bigger-image? a b) ...)

(check-expect (max-image))
(check-expect (max-image))

35

Reuse

We should be able to use bigger-image? to write
the max-image function

; image image -> image
; Returns a if a has more pixels than b,
; otherwise returns b
(define (max-image a b)
 (cond

[(bigger-image? a b) a]
[else b]))

(check-expect (max-image))
(check-expect (max-image))

36

Evaluation Rules for

cond

Design Recipe with

cond

Helper Functions and Reuse

Compound Data

37

Positions

• A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

38

Positions

• A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)

39

Positions

• A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)

A

posn
 is a value, just like a number, symbol, or image

4�

posn-x and posn-y

The posn-x and posn-y operators extract numbers
from a posn:

(posn-x (make-posn 1 2))
 →

1

(posn-y (make-posn 1 2))
 →

2

41

posn-x and posn-y

The posn-x and posn-y operators extract numbers
from a posn:

(posn-x (make-posn 1 2))
 →

1

(posn-y (make-posn 1 2))
 →

2

• General evaluation rules for any values X and Y:

(posn-x (make-posn X Y))
 →

X

(posn-y (make-posn X Y))
 →

Y

42

Positions and Values

Is (make-posn 100 200) a value?

43

Positions and Values

Is (make-posn 100 200) a value?

Yes.

A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

44

Positions and Values

Is (make-posn (+ 1 2) 200) a value?

45

Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

46

Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y)
 →

(make-posn Z Y)
when X →

Z

(make-posn X Y)
 →

(make-posn X Z)
when Y →

Z

47

Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y)
 →

(make-posn Z Y)
when X →

Z

(make-posn X Y)
 →

(make-posn X Z)
when Y →

Z

Example:

(make-posn (+ 1 2) 200)
 →

(make-posn 3 200)
48

More Examples

Try these in DrRacket’s stepper:

(make-posn (+ 1 2) (+ 3 4))

(posn-x (make-posn (+ 1 2) (+ 3 4)))

; posn -> num
(define (pixels-from-corner p)
 (+ (posn-x p) (posn-y p)))
(pixels-from-corner (make-posn 1 2))

; posn -> posn
(define (flip p)
 (make-posn (posn-y p) (posn-x p)))
(flip (make-posn 1 2))

49

