
Compound Data So Far

A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

• (make-posn 1 2) is a value

• (posn-x (make-posn 1 2)) →

1

• (posn-y (make-posn 1 2)) →

2

1

Compound Data So Far

A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

• (make-posn 1 2) is a value

• (posn-x (make-posn 1 2)) →

1

• (posn-y (make-posn 1 2)) →

2

So much for computation... how about program design?

2

Design Recipe I

Data

• Understand the input data: num, bool, string, or image

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Body

• The most creative step: implement the function body

Test

• Run the examples

3

Body

If the input is compound data, start the body by selecting the parts

4

Body

If the input is compound data, start the body by selecting the parts

; posn -> num
; Return the X part of p if it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)
 ...)

(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

5

Body

If the input is compound data, start the body by selecting the parts

; posn -> num
; Return the X part of p if it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)
 ... (posn-x p) ... (posn-y p) ...)

(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

6

Body

If the input is compound data, start the body by selecting the parts

; posn -> num
; Return the X part of p if it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)
 (cond

[(> (posn-x p) (posn-y p)) (posn-x p)]
[else (posn-y p)]))

(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

7

Body

If the input is compound data, start the body by selecting the parts

; posn -> num
; Return the X part of p if it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)
 (cond

[(> (posn-x p) (posn-y p)) (posn-x p)]
[else (posn-y p)]))

(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

Since this guideline applies before the usual body work, let’s split it
into an explicit step

8

Design Recipe II

Data

• Understand the input data

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Template

• Set up the body based on the input data (and only the input)

Body

• The most creative step: implement the function body

Test

• Run the examples

9

Body Template

If the input is compound data, start the body by selecting the parts

; posn -> num
; ...
(define (max-part p)
 ... (posn-x p) ... (posn-y p) ...)

1�

Body Template

If the input is compound data, start the body by selecting the parts

; posn -> num
; ...
(define (max-part p)
 ... (posn-x p) ... (posn-y p) ...)

Check: number of parts in template =
number of parts data defnition named in contract

11

Body Template

If the input is compound data, start the body by selecting the parts

; posn -> num
; ...
(define (max-part p)
 ... (posn-x p) ... (posn-y p) ...)

Check: number of parts in template =
number of parts data defnition named in contract

A

posn
 is

(make-posn X Y)

where X is a num and Y is a num

12

Body Template

If the input is compound data, start the body by selecting the parts

Handin artifact: a comment

; posn -> num
; Return the X part of p if it's bigger
; than the Y part, otherwise the Y part
;
;
;

(define (max-part p)
 ... (posn-x p) ... (posn-y p) ...)

(define (max-part p)
 ... (posn-x p) ... (posn-y p) ...)
(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

13

Design Recipe II

Data

• Understand the input data

Signature, Purpose, and Header

• Describe (but don’t write) the function

Examples

• Show what will happen when the function is done

Template

• Set up the body based on the input data (and only the input)

Body

• The most creative step: implement the function body

Test

• Run the examples

14

Other Kinds of Data

Suppose we want to represent snakes:

• name

• weight

• favorite food

What kind of data is appropriate?

15

Other Kinds of Data

Suppose we want to represent snakes:

• name

• weight

• favorite food

What kind of data is appropriate?

Not num, bool, string, image, or posn...

16

Data Defnitions and defne-struct

Here’s what we’d like:

A

snake
 is

(make-snake string num string)

17

Data Defnitions and defne-struct

Here’s what we’d like:

A

snake
 is

(make-snake string num string)

... but make-snake is not built into DrRacket

18

Data Defnitions and defne-struct

Here’s what we’d like:

A

snake
 is

(make-snake string num string)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:

(define-struct snake (name weight food))

19

Data Defnitions and defne-struct

Here’s what we’d like:

A

snake
 is

(make-snake string num string)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:

(define-struct snake (name weight food))

Creates the following:

• make-snake
• snake-name
• snake-weight
• snake-food

2�

Data Defnitions and defne-struct

Here’s what we’d like:

A

snake
 is

(make-snake string num string)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:

(define-struct snake (name weight food))

Creates the following:

(snake-name (make-snake X Y Z))
 →

X

(snake-weight (make-snake X Y Z))
 →

Y

(snake-food (make-snake X Y Z))
 →

Z

21

snake

(define-struct snake (name weight food))

snake

"Slinky" 10 "rats"

(make-snake "Slinky" 10 "rats")

snake

"Slimey" 8 "pudding"

(make-snake "Slimey" 8 "pudding")

posn

(define-struct posn (x y))

posn

3 4

(make-posn 3 4)

posn

8 -2

(make-posn 8 -2)

22

Data

Deciding to defne snake is in the frst step of the design recipe

23

Data

Deciding to defne snake is in the frst step of the design recipe

Handin artifact: a comment and/or define-struct

; A snake is
; (make-snake string num string)

(define-struct snake (name weight food))

24

Data

Deciding to defne snake is in the frst step of the design recipe

Handin artifact: a comment and/or define-struct

; A snake is
; (make-snake string num string)

(define-struct snake (name weight food))

Now that we’ve defned snake, we can use it in contracts

25

Programming with Snakes

Implement snake-skinny?, which takes a snake and

returns #true if the snake weights less than 10 pounds,

#false
 otherwise

26

Programming with Snakes

Implement snake-skinny?, which takes a snake and

returns #true if the snake weights less than 10 pounds,

#false
 otherwise

Implement feed-snake, which takes a snake and
returns a snake with the same name and favorite food,
but fve pounds heavier

27

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

28

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

29

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

Implement feed-dillo, where a dillo eats 2 pounds
of food at a time

3�

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

Implement feed-dillo, where a dillo eats 2 pounds
of food at a time

... unless it's dead

31

