Other Kinds of Data

Suppose we want to represent snakes:
* name
* weight
* favorite food

What kind of data is appropriate?

Other Kinds of Data

Suppose we want to represent snakes:
* name
* weight
* favorite food

What kind of data is appropriate?

Not num, bool, string, image, or posn...

Data Definitions and define-struct

Here’s what we'd like:

A snake is
(make-snake string num string)

Data Definitions and define-struct

Here’s what we'd like:

A snake is
(make-snake string num string)

... but make-snake is not built into DrRacket

Data Definitions and define-struct

Here’s what we'd like:

A snake is
(make-snake string num string)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:

(define-struct snake (name weight food))

Data Definitions and define-struct

Here’s what we'd like:

A snake is
(make-snake string num string)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:
(define-struct snake (name weight food))

Creates the following;

make-snake

snake—-name

snake-weight
snake-food

Data Definitions and define-struct

Here’s what we'd like:

A snake is
(make-snake string num string)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:

(define-struct snake (name weight food))
Creates the following;

(snake—-name (make-snake X Y Z)) - X
(snake-weight (make-snake X Y 2)) -Y
(snake-food (make-snake X Y 2)) - Z

snake

"Slinky"|10|"rats"

(make-snake "Slinky" 10 "rats")

I snake—!

snake

"Slimey" | 8 |"pudding"

(define-struct snake (name weight food))

(make-snake "Slimey" 8 "pudding")

posn

34

(make-posn 3 4)

posn

8 |-2

(define-struct posn (x y))

(make-posn 8 -2)

Data

Deciding to define snake is in the first step of the design recipe

Data

Deciding to define snake is in the first step of the design recipe

Handin artifact: a comment and/or define-struct

; A snake 1is
; (make-snake string num string)

(define-struct snake (name weight food))

10

Data

Deciding to define snake is in the first step of the design recipe

Handin artifact: a comment and/or define-struct

; A snake 1is
; (make-snake string num string)

(define-struct snake (name weight food))

Now that we've defined snake, we can use it in signatures

11

Programming with Snakes

Implement snake-skinny?, which takes a snake and
returns #true if the snake weights less than 10 pounds,
#false otherwise

12

Programming with Snakes

Implement snake-skinny?, which takes a snake and
returns #true if the snake weights less than 10 pounds,
#false otherwise

Implement £feed-snake, which takes a snake and
returns a snake with the same name and favorite food,
but five pounds heavier

13

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

14

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

15

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

Implement £feed-dillo, where a dillo eats 2 pounds
of food at a time

16

Programming with Armadillos

Pick a representation for armadillos (“dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

Implement £feed-dillo, where a dillo eats 2 pounds
of food at a time

... unless it's dead

17

Expanding the Zoo

We have snakes and armadillos. Let’s add ants.

An ant has
* a weight

* a location in the zoo

18

Expanding the Zoo

We have snakes and armadillos. Let’s add ants.

An ant has

* a weight

* a location in the zoo
; An ant 1is

; (make-ant num posn)
(define-struct ant (weight loc))

19

Expanding the Zoo

We have snakes and armadillos. Let’s add ants.

An ant has

* a weight

* a location in the zoo
; An ant is

; (make-ant num posn)
(define-struct ant (weight loc))

(make-ant 0.001 (make-posn 4 5))

(make-ant 0.007 (make-posn 3 17))

20

Ants

ant

posn

0.001

(make-ant 0.001 (make-posn 4 5))

ant

posn

0.007

(make-ant 0.007 (make-posn 3 17))

Programming with Ants

Define ant-at-home?, which takes an ant and reports
whether it is at the origin

22

Signhature, Purpose, and Header

; ant -> bool

23

Signhature, Purpose, and Header

; ant -> bool
: Check whether ant a is home

24

Signhature, Purpose, and Header

; ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)

-)

25

Examples

; ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)

-)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 0 0)))
#true)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 1 1)))
#false) 26

Template

; ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
(ant-weight a)
(ant-loc a) ...)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 0 0)))
#true)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 1 1)))
#false) ¢

Template

; ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
(ant-weight a)
(posn-at-home? (ant-loc a)) ...)

New template rule: data-defn reference = template reference

Add templates for referenced data, if needed, and
implement body for referenced data

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 0 0)))
#true)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 1 1)))
#false) 28

Template

; ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
(ant-weight a)
(posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)
(posn-x p) ... (posn-y p) ...)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 0 0)))
#true)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 1 1)))
#false) 2

Body

; ant -> bool
: Check whether ant a is home

(define (ant-at-home? a)
(ant-weight a)
(posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)
(posn-x p) ... (posn-y p) ...)

(define (ant-at-home? a)
(posn-at-home? (ant-loc a)))
(define (posn-at-home? p)
(and (= (posn-x p) 0) (= (posn-y p) 0)))

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 0 0)))
#true)

(check-expect (ant-at-home? (make-ant 0.001 (make-posn 1 1)))
#false) 30

Shapes of Data and Templates

The shape of the template matches the shape of the data

; An ant 1is
; (make-ant num posn)

; A pos#—1s
(make-posn num num)

N

(define (ant-at-home? a)
(ant-weight a)
(posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)
(posn-x p) ... (posn-y p) ...)

31

Programming with Ants

Define feed-ant, which feeds an ant 0.001 Ibs of food

Define move—-ant, which takes an ant, an amount to

move X, and an amount to move Y, and returns a moved
ant

32

Animals

All animals need to eat...

Define feed-animal, which takes an animal (snake,

dillo, or ant) and feeds it (5 Ibs, 2 1bs, or 0.001 1bs,
respectively)

33

Animals

All animals need to eat...

Define feed-animal, which takes an animal (snake,

dillo, or ant) and feeds it (5 Ibs, 2 1bs, or 0.001 1bs,
respectively)

What is an animal!?

34

Animal Data Definition

; An animal is either
- snake

- dillo

- ant

35

Animal Data Definition

; An animal i1s either

; - snake
; - dillo
; - ant

The “either’” above makes this a new kind of data
definition:

data with varieties

36

Animal Data Definition

; An animal i1s either

; - snake
; - dillo
; - ant

The “either”’ above makes this a new kind of data
definition:

data with varieties

Examples:

(make-snake "slinky" 10 "rats")
(make-dillo 2 #true)

(make-ant 0.002 (make-posn 3 4))

37

Feeding Animals

; animal -> animal
; To feed the animal a
(define (feed-animal a)

-)

38

Feeding Animals

; animal -> animal
; To feed the animal a
(define (feed-animal a)

ces)

(check-expect (feed-animal (make-snake "Slinky" 10 "rats"))
(make-snake "Slinky" 15 "rats"))

(check-expect (feed-animal (make-dillo 2 #true))
(make-dillo 4 #true))

(check-expect (feed-animal (make-ant 0.002 (make-posn 3 4)))
(make-ant 0.003 (make-posn 3 4)))

39

Template for Animals

For the template step...

(define (feed-animal a)

-)

* Is a compound data?

40

Template for Animals

For the template step...

(define (feed-animal a)

-)
* Is a compound data?
* Technically yes, but the definition animal doesn’t

have make-something, so we don’t use the
compound-data template rule

41

Template for Varieties

Choice in the data definition

; An animal is either

; - snake
; = dillo
; - ant

means cond in the template:

(define (feed-animal a)
(cond
[... ...]
[... ...]
[... ...]))

Three data choices means three cond cases

Questions for Varieties

(define (feed-animal a)
(cond

1))

How do we write a question for each case!

43

Questions for Varieties

(define (feed-animal a)
(cond

1))
How do we write a question for each case!

It turns out that
(define-struct snake (name weight food))

provides snake?

(snake? (make-snake "slinky" 5 "rats'")) - #true
(snake? (make-dillo 2 #true)) - #false
(snake? 17) - #false

44

Template

(define (feed-animal a)

(cond
 (snake? a) ...]
 (dillo? a) ...]
 (ant? a) ...]))

New template rule: varieties > cond

45

Template

(define (feed-animal a)

(cond
 (snake? a) ...]
 (dillo? a) ...]
(ant? a) ...]1))

New template rule: varieties > cond

Now continue template case-by-case...

46

Template

(define (feed-animal a)

(cond
 (snake? a) ... (feed-snake a) ...]
' (dillo? a) ... (feed-dillo a) ...]
 (ant? a) ... (feed-ant a) ...1))

Remember: references in the data definition = template references

47

Template

(define (feed-animal a)

(cond
 (snake? a) ... (feed-snake a) ...]
 (dillo? a) ... (feed-dillo a) ...]
 (ant? a) ... (feed-ant a) ...1))

Remember: references in the data definition = template references

; An animal is either
;- snake

; = dillo

;, — ant

48

Shapes of Data and Templates

; An animal is either (define (feed-animal a)

- snake (cond

- dillo [(snake? a) ... (feed-snake a) ...]

- ant [(dillo? a) ... (feed-dillio a) ...]

[(ant? a) ... (feed-ant a) ...]))
; A snake is
(make-snake string num string) (define (feed-snake s)
(snake-name s) ... (snake-weight s)

; A dillo is ... (snake-food s) ...)

(make-dillo ntum bool)
(define (feed-dillo d)

; An ant 1is ... (dillo-weight d)
(make-ant num posn) ... (dillo-alive?d) ...)
; A posn is (define (feed-ant a)
(make-posn num num) ... (ant-weight d)
(feed-posn (ant-loc d)) ...)

(define (feed-posn p)
(posn-x p) ... (posn-y p) ...)

49

Design Recipe |l

Data

* Understand the input data
Signature, Purpose, and Header
* Describe (but don’t write) the function
Examples

* Show what will happen when the function is done

Template

* Set up the body based on the input data (and only the input)
Body

* The most creative step: implement the function body

Test

* Run the examples

50

Data

When the problem statement mentions N different varieties of a
thing, write a data definition of the form

; A thing 1is

; - varietyl

; — varietyN

Design Recipe |l

Data

* Understand the input data
Signature, Purpose, and Header
* Describe (but don’t write) the function
Examples

* Show what will happen when the function is done

Template

* Set up the body based on the input data (and only the input)
Body

* The most creative step: implement the function body

Test

* Run the examples

52

Examples

When the input data has varieties, be sure to pick each variety at
least once.

; An animal is either

; — snake
; - dillo
; - ant

(check-expect (feed-animal (make-snake "Slinky" 10 "rats"))
(make-snake "Slinky" 15 "rats"))

(check-expect (feed-animal (make-dillo 2 #true))
(make-dillo 4 #true))

(check-expect (feed-animal (make-ant 0.002 (make-posn 3 4)))
(make-ant 0.003 (make-posn 3 4)))

53

Design Recipe |l

Data

* Understand the input data
Signature, Purpose, and Header
* Describe (but don’t write) the function
Examples

* Show what will happen when the function is done

Template

* Set up the body based on the input data (and only the input)
Body

* The most creative step: implement the function body

Test

* Run the examples

54

Template

When the input data has varieties, start with cond

* N varieties = N cond lines

* Formulate a question to match each corresponding variety

« Continue template steps case-by-case

(define (feed-animal a)

(cond
[(snake? a) ...]
[(dillo? a) ...]

[(ant? a) ...]))

55

Template

When the input data has varieties, start with cond
* N varieties > N cond lines

* Formulate a question to match each corresponding variety

« Continue template steps case-by-case

When the data definition refers to a data definition, make the
template refer to a template

(define (ant-at-home? a)
(ant-weight a)
(posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)
(posn-x p) ... (posn-y p) ...)

56

Template

When the input data has varieties, start with cond

* N varieties = N cond lines
* Formulate a question to match each corresponding variety

« Continue template steps case-by-case

When the data definition refers to a data definition, make the
template refer to a template

(define (feed-animal a)

(cond
 (snake? a) ... (feed-snake a) ...]
' (dillo? a) ... (feed-dillo a) ...]
(ant? a) ... (feed-ant a) ...1))

57

