Data So Far

* Built-in atomic data: num, bool, string, and
image

* Built-in compound data: posn

* Programmer-defined compound data:
define-struct plus a data definition

* Programmer-defined data with varieties: data definition
with “either”

Today: more examples

Example |: Managing Grades

Suppose that we need to manage exam grades

Example |: Managing Grades

Suppose that we need to manage exam grades

100

Example |: Managing Grades

Suppose that we need to manage exam grades

-

Example |: Managing Grades

Suppose that we need to manage exam grades

Example |: Managing Grades

Suppose that we need to manage exam grades

w0 o] [&

* Record a grade for each student

* Distinguish zero grade from missing the exam

We want to implement passed-exam?

Programming with Grades
Data

* Use a number for a grade, obviously

Programming with Grades
Data
* Use a number for a grade, obviously

* For a non-grade, use the built-in constant ' ()

" () is something that you can use to represent nothing.

It’s not a num, bool, string, image, or posn.

Programming with Grades

Data

; A grade i1is either
; - num

;o= ()

Data

Examples:

Programming with Grades

; A grade i1is either
; - num

;o= " ()

100

' ()

10

Programming with Grades

Signature, Purpose, and Header

; passed-exam? : grade -> bool

11

Programming with Grades

Signature, Purpose, and Header

; passed-exam? : grade -> bool
; Determines whether g is 70 or better

12

Programming with Grades

Signature, Purpose, and Header

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? q)

-)

13

Programming with Grades

Examples

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? q)

-)

(check-expect (passed-exam? 100) #true)
(check-expect (passed-exam? 0) #false)
(check-expect (passed-exam? '()) #false)

14

Programming with Grades

Template

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? q)

(cond
[(number? g) ...]
[(empty? g) ...]1))

varieties > cond

(check-expect (passed-exam? 100) #true)
(check-expect (passed-exam? 0) #false)
(check-expect (passed-exam? '()) #false)

15

Body

Programming with Grades

; passed-exam? : grade -> bool
; Determines whether g is 70 or better

(define (passed-exam? q)

(cond

[(number? g) ...]

[(empty? g) ...1))
(define (passed-exam? Q)
(cond
[(number? g) (>= g 70)]
[(empty? g) #false]))

(check-expect (passed-exam? 100) #true)
(check-expect (passed-exam? 0) #false)
(check-expect (passed-exam? '()) #false)

16

Grades and Re-takes

Suppose that we allow one re-test per student

100

17

Grades and Re-takes

Suppose that we allow one re-test per student

100

N

A grade is either

3

]

- num
- posn

()

18

Programming with Grades and Retests

Signature, Purpose, and Header

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? q)

-)

19

Programming with Grades and Retests

Examples

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? q)

-)

(check-expect (passed-exam? 100) #true)
(check-expect (passed-exam? (make-posn 0 80)) #true)
(check-expect (passed-exam? '()) #false)

20

Programming with Grades and Retests

Template

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? q)

(cond
[(number? g) ...]

[(posn? g) ...]
[(empty? g) ...]))

varieties > cond

(check-expect (passed-exam? 100) #true)
(check-expect (passed-exam? (make-posn 0 80)) #true)

(check-expect (passed-exam? '()) #false)

21

Programming with Grades and Retests

Template

; passed-exam? : grade -> bool
; Determines whether g is 70 or better
(define (passed-exam? Q)

(cond

[(number? g) ...]

[(posn? g) ... (posn-passed-exam? g) ...]
[(empty? g) ...]))

data-defn reference = template reference

(check-expect (passed-exam? 100) #true)
(check-expect (passed-exam? (make-posn 0 80)) #true)
(check-expect (passed-exam? '()) #false)

22

Complete Function

; passed-exam? : grade -> bool
(define (passed-exam? q)
(cond

[(number? g) (>= g 70)]
[(posn? g) (posn-passed-exam? g)]
[(empty? g) #false]))

; posn-passed-exam? : posn -> bool
(define (posn-passed-exam? p)
(or (>= (posn-x p) 70)
(>= (posn-y p) 70)))

Plus tests and templates...

23

Shapes of Data and Functions

As always, the shape of the function matches the shape of the data

; A grade is either
; - num
; — posn

;o= ")

; A posn is
; (make-posn num num)

(define (func-for-grade gq)

(cond

[(number? g) ...]

[(posn? g) ... (func-for-posn g) ...]
[(empty? g) ...1))

(define (func-for-posn p)
(posn-x p) ... (posn-y p) ..)

Summary

Today’s examples show:

* A data definition with variants need not involve
structure choices

* A data definition with variants can include
make-something directly

... usually when the structure by itself isn’t useful

* Implementation shape still matches the data shape

No recipe changes!

25

