» Sorting a List
Multiple Complex Inputs

Natural Numbers

Sorting Lists

Implement sort-1ist, which takes a list of numbers
and returns a sorted list of the same numbers

Sorting a List
» Multiple Complex Inputs

Natural Numbers

Multiple Complex Arguments

Implement append-1ists, which takes two lists of
numbers and returns a list with all of the numbers from
the first list followed by all of the numbers from the
second list

Implement parallel-sum, which takes two lists of
numbers (of the same length) and returns a list of sums

Implement merge-1ists, which takes two sorted lists
of numbers and returns a sorted list with all of the
numbers

Multiple Complex Arguments

Implement append-1ists, which takes two lists of
numbers and returns a list with all of the numbers from
the first list followed by all of the numbers from the
second list

Implement parallel-sum, which takes two lists of
numbers (of the same length) and returns a list of sums

Implement merge-1ists, which takes two sorted lists
of numbers and returns a sorted list with all of the
numbers

; list-of-num list-of-num -> list-of-num

(check-expect (append-lists '() '"()) '())

(check-expect (append-lists (list 1 3 5) (list 0 4 6))
(list 1 3 5 0 4 6))

Multiple Complex Arguments

Implement append-1ists, which takes two lists of
numbers and returns a list with all of the numbers from
the first list followed by all of the numbers from the
second list

Implement parallel-sum, which takes two lists of
numbers (of the same length) and returns a list of sums

Implement merge-1ists, which takes two sorted lists
of numbers and returns a sorted list with all of the
numbers

; list-of-num list-of-num -> list-of-num

(check-expect (parallel-sum '() '"()) '())

(check-expect (parallel-sum (list 1 3 5) (list 0 4 6))
(list 1 7 11))

Multiple Complex Arguments

Implement append-1ists, which takes two lists of
numbers and returns a list with all of the numbers from
the first list followed by all of the numbers from the
second list

Implement parallel-sum, which takes two lists of
numbers (of the same length) and returns a list of sums

Implement merge-1ists, which takes two sorted lists
of numbers and returns a sorted list with all of the
numbers

; list-of-num list-of-num -> list-of-num

(check-expect (merge-lists '() "()) '())

(check-expect (merge-lists (list 1 3 5) (list 0 4 6))
(l1ist 0 1 3 4 5 6))

Multiple Complex Arguments

Implement append-1ists, which takes two lists of
numbers and returns a list with all of the numbers from
the first list followed by all of the numbers from the
second list

Implement parallel-sum, which takes two lists of
numbers (of the same length) and returns a list of sums

Implement merge-1ists, which takes two sorted lists
of numbers and returns a sorted list with all of the
numbers

; list-of-num list-of-num -> list-of-num

What template do we use for a function for two lists!?

Multiple Complex Arguments

Sometimes a complex argument is “along for the ride,” so use the
template for the other argument

(check-expect (append-lists (list 1 3 5) (list 0 4 6))
(list 1 3 5 0 4 6))

(define (append-lists al bl)
(cond
[(empty? al) ...]
[(cons? al)
(first al)
(append-lists (rest al) bl) ...]))

Multiple Complex Arguments

Sometimes the arguments are exactly the same shape, so use
essentially the one-argument template

(check-expect (parallel-sum (list 1 3 5) (list O 4 6))
(list 1 7 11))

(define (parallel-sum al bl)
(cond
[(empty? al) ...]
[(cons? al)
(first al) ... (first bl)
(parallel-sum (rest al) (rest bl)) ...1]1))

10

Multiple Complex Arguments

Sometimes you have to consider all possible combinations, so use a
template that considers all combinations

(check-expect (merge-lists (list 1 3 5) (list O 4 6))
(list 01 3 4 5 6))

(define (merge-lists al bl)

(cond
[(and (empty? al) (empty? bl)) ...]
[(and (empty? al) (cons? bl))

(first bl) ... (merge-lists al (rest bl)) ...]
[(and (cons? al) (empty? bl))

(first al) ... (merge-lists (rest al) bl) ...]
[(and (cons? al) (cons? bl))

(first al) ... (first bl)

(merge-lists (rest al) bl)
(merge-lists al (rest bl))
(merge-lists (rest al) (rest bl)) ...]))

11

Sorting a List
Multiple Complex Inputs
» Natural Numbers

12

Numbers to Generate Lists

Implement create-1ist, which takes a non-negative integer n
and produces a list of numbers from n to 0, inclusive

; num -> list-of-num
(check-expect (create-list 3) (list 3 2 1 0))

(check-expect (create-list 0) (list 0))

13

Numbers to Generate Lists

Implement create-1ist, which takes a non-negative integer n
and produces a list of numbers from n to 0, inclusive

; num -> list-of-num
(check-expect (create-list 3) (list 3 2 1 0))

(check-expect (create-list 0) (list 0))

The template for num isn’t much help:

(define (func-for-num n)

-)

14

Numbers to Generate Lists

Implement create-1ist, which takes a non-negative integer n
and produces a list of numbers from n to 0, inclusive

; num -> list-of-num
(check-expect (create-list 3) (list 3 2 1 0))

(check-expect (create-list 0) (list 0))

The template for num isn’t much help:

(define (func-for-num n)

-)

But create-1ist actually takes a natural number

15

Natural Numbers

; A nat is either

; - Taddl nat)
Examples:
0
(addl 0)

(addl (addl (addl 0)))

16

Natural Numbers

; A nat i1s either

; - ?addl nat)
Examples:
0
(addl 0)

(addl (addl (addl 0)))

These examples have shortcuts
0,1,and 3

but the long forms correspond to the template

17

Template for Natural Numbers

; A nat 1s either
;. =0
; - (addl nat)

(define (func-for-nat n)
(cond
[(zero? n) ...]
[else ... (func-for-nat (subl n))

1))

18

Template for Natural Numbers

; A nat 1s either
;. =0
; — (addl nat)

(define (func-for-nat n)

(cond
[(zero? n) ...]
[else ... (func-for-nat (subl n)) ...1]1))

(define (create-list n)
(cond
[(zero? n) (list 0)]
[else (cons n (create-list (subl n)))]))

19

Generating the List the Other Way

Implement create-up-1list, which takes a non-negative integer
n and produces a list of numbers from O to n inclusive

; num -> list-of-num
(check-expect (create-list 3) (list 0 1 2 3))

(check-expect (create-list 0) (list 0))

20

Generating the List the Other Way

Implement create-up-1list, which takes a non-negative integer
n and produces a list of numbers from O to n inclusive

; num -> list-of-num
(check-expect (create-list 3) (list 0 1 2 3))

(check-expect (create-list 0) (list 0))

(define (create-up-list n)
(cond
[(zero? n) (list 0)]
[else
n
(create-up-list (subl n)) ...]1))
; uh oh... can't cons onto recur result

21

Using Subtraction to Count Up

(define (create-up-list n)
(create-up-to-n-list n n))

; Creates a list with d elements before n
(define (create-up-to-n-list d n)
(cond
[(zero? d) (list n)]
[else
(cons (- n d)
(create-up-to-n-list (subl d) n))]))

22

Using Subtraction to Count Up

(define (create-up-list n)
(create-up-to-n-list n n))

; Creates a list with d elements before n
(define (create-up-to-n-list d n)
(cond
[(zero? d) (list n)]
[else
(cons (- n d)
(create-up-to-n-list (subl d) n))]))

...or replace d withm = (+ d n)

As d goes down, m goes up...

23

Counting Up Directly

(define (create-up-list n)
(create-m-to-n-1list 0 n))

; Creates a list from m to n
(define (create-m-to-n-list m n)

(cond
[(=m n) (list n)]
[else

(cons m

(create-m-to-n-list (addl m) n))]))

24

Counting Up Directly

(define (create-up-list n)
(create-m-to-n-1list 0 n))

; Creates a list from m to n
(define (create-m-to-n-list m n)

(cond
[(= m n) (list n)]
[else

(cons m

(create-m-to-n-list (addl m) n))]))

Use the stepper to see how it works

25

Counting Up Directly

(define (create-up-list n)
(create-m-to-n-1list 0 n))

; Creates a list from m to n
(define (create-m-to-n-list m n)

(cond
[(=m n) (list n)]
[else

(cons m

(create-m-to-n-list (addl m) n))]))
Use the stepper to see how it works
Similar ideas work for counting by fives, counting down

to 20, etc.

26

