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Hello, computer



Hello, computer



We use computers every day as electronic black 
boxes that do amazing things by  

collecting,  

storing,  

retrieving, and  

transforming data.



Computers only do very basic things. 
Numerical calculations: 

Add 

Subtract 

… 

Symbolic manipulations 

Compare two numbers 

Substitute one string of letters and numbers for another 

…



But when trillions of these simple operations are 
arranged in the right order, amazing computations 
can be carried out: 

forecasting tomorrow’s weather 

deciding where to drill for oil 

finding which physical places are most likely to be visited by a person 

figuring out which two people would make a great couple 😘😍 

…













The magic of a computer is its ability to become 
almost anything you can imagine… 

…as long as you can explain exactly what that is.



When we program a computer to do something, 
everything needs to be described precisely. 

Say you tell an accounting program to bill your clients the amount 
each owes. 

Should the computer send a weekly bill for $0 to clients who owe 
nothing? 

If you tell the computer to send a threatening letter to clients who 
haven’t paid, then clients who owe nothing will receive threatening 
letters until they send you a payment of $0!



When computers behave intelligently, it’s because a 
person used their intelligence to design an intelligent 
program.



There are many programming languages we can use 
to write these programs.
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github.com/stereobooster/programming-languages-genealogical-tree

Grace Hopper
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There are many programming languages due to 
intended use 

history 

habit 

taste



Ancient history (my childhood)



In this course, we’ll be working 
in two programming languages:



Why join the navy  
if you can be a pirate?

famous Steve Jobs quote 
—with apologies to Grace Hopper, who was actually a rear admiral in the Navy!



code.pyret.org/editor











Drawing pictures this way is fun – but also a lot of 
typing. 

Here’s where things gets interesting:  

We can define new words.







In extending the language, the programmer uses the 
power of functional abstraction to create new 
building blocks.











What will we do in this course?



Identify and organize the data needed to solve a 
problem 

Break a problem down into subproblems that can 
be solved with computations 

Express computations over the data 

Test those computations to make sure they’re doing 
what they’re supposed to

Data design

Programming/CS

Testing

1

2

3

4

Programming



Think about whether it’s a good idea to solve the 
problem, and how your solution might affect the 
world around you.

0



This course teaches skills that will help you both in 
computer science and beyond.



Three major units: 
Tabular / data science data 

Other core CS data structures and how to program with them 

Additional data structures and programming techniques

Pyret

Python



Goals

Apply fundamental data-organizations (called data 
structures) to capture the information in a 
computing problem. 

Break down a computing question into manageable 
smaller problems. 

Write programs to compute answers to questions 
over fundamental data structures. 

Check whether your programs behave as intended/
required.



Course information



Class:  
Monday & Wednesday, 9:00–10:15 a.m. 

Sanders Classroom 006 

Lab:  
Friday, 9:00–11:00 a.m. 

Sanders Classroom 006



https://www.cs.vassar.edu/courses/cs101-2022-02/top





Grading

Weekly lab exercises
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20%

20%

20%

20%
Labs  
  
 



Grading
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20%
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Assignments
 
 
 

Weekly programming assignments



gradescope.com



www.cs.vassar.edu/integrity
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Grading

Two midterm exams
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Exam 1
Exam 2
 



Grading

20%

20%

20%

20%

20%
Labs
Assignments
Exam 1
Exam 2
Exam 3

Regularly scheduled final exam



“All through our education, we are being taught a kind of 
reverse mindfulness. A kind of Future Studies where – via 
the guise of mathematics, or literature, or history, or 
computer programming, or French – we are being taught 
to think of a time different to the time we are in. Exam 
time. Job time. When-we-are-grown-up time. 

To see the act of learning as something not for its own 
sake but because of what it will get you reduces the 
wonder of humanity. We are thinking, feeling, art-making, 
knowledge-hungry, marvelous animals, who understand 
ourselves and our world through the act of learning. It is 
an end in itself. It has far more to offer than the things it 
lets us write on application forms. It is a way to love living 
right now.” 
Matt Haig, Notes on a Nervous Planet



So… 
Don’t just focus on grades. 
Don’t just focus on what happens if you get an A in the 
course. 
Be here now. 
If you worry about whether you understand what we’re 
doing in class, in lab, and on the assignments, your grades 
will take care of themselves. 
Trust me.



dcic-world.org





We’ve got a big journey ahead of us. I hope you’re 
excited!
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