CMPU 101 §02

Problem-Solving and
Abstraction

Fall 2022

ello, computer

We use computers every day as electronic black
boxes that do amazing things by

collecting,
storing,
retrieving, and

transforming data.

Computers only do very basic things.

Numerical calculations:
Add
Subtract

Symbolic manipulations
Compare two numbers

Substitute one string of letters and numbers for another

But when trillions of these simple operations are
arranged in the right order, amazing computations
can be carried out:

forecasting tomorrow’s weather
deciding where to drill for oil
finding which physical places are most likely to be visited by a person

figuring out which two people would make a great couple (3 &

B Star Wars

00:00:23 |

Compare Pas U Redo View: 109% ®?

1O JU/A

OSCILLATOR OSCILLATOR

ANIMOOG

RIBBON

UNDO

REDO

® @

YOLUNE sLDE

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

In other projects

& en.wikipedia.org/wiki/Computer &

+

& Not logged in Talk Contributions Create account Log in

Article Talk Read View source View history | Search Wikipedia Q

Computer a

From Wikipedia, the free encyclopedia

For other uses, see Computer (disambiguation).

A computer is a digital electronic machine that can be programmed to carry out
sequences of arithmetic or logical operations (computation) automatically. Modern
computers can perform generic sets of operations known as programs. These programs
enable computers to perform a wide range of tasks. A computer system is a
"complete" computer that includes the hardware, operating system (main software), and
peripheral equipment needed and used for "full" operation. This term may also refer to a
group of computers that are linked and function together, such as a computer network
or computer cluster.

A broad range of industrial and consumer products use computers as control systems.
Simple special-purpose devices like microwave ovens and remote controls are
included, as are factory devices like industrial robots and computer-aided design, as
well as general-purpose devices like personal computers and mobile devices like
smartphones. Computers power the Internet, which links billions of other computers and
users.

Early computers were meant to be used only for calculations. Simple manual
instruments like the abacus have aided people in doing calculations since ancient
times. Early in the Industrial Revolution, some mechanical devices were built to
automate long tedious tasks, such as guiding patterns for looms. More sophisticated }
electrical machines did specialized analog calculations in the early 20th century. The Computers and computing devices from different eras
first digital electronic calculating machines were developed during World War II. The — clockwise from top left:

first semiconductor transistors in the late 1940s were followed by the silicon-based ;aarizf:':mc:u:)r::ﬁ;o(rlgpMutg;(:eanlA:go)

MOSFET (MOS transistor) and monolithic integrated circuit (IC) chip technologies in the Desktop computer (IBM ThinkCentre S50 with

late 1950s, leading to the microprocessor and the microcomputer revolution in the monitor)
4nza~ T o 4 T PO " : : Supercomputer (IBM Summit)

[X N J Jonathan Gordon - Computer (White to Move) — Edited

The magic of a computer is its ability to become
almost anything you can imagine...

...as long as you can explain exactly what that is.

When we program a computer to do something,
everything needs to be described precisely.
Say you tell an accounting program to bill your clients the amount
each owes.

Should the computer send a weekly bill for $0 to clients who owe
nothing?

If you tell the computer to send a threatening letter to clients who
haven't paid, then clients who owe nothing will receive threatening
letters until they send you a payment of $0!

When computers behave intelligently, it's because a
person used their intelligence to design an intelligent
program.

There are many programming languages we can use
to write these programs.

GRACE B. MURRAY

| 1' It
R | (|2
‘(316 West 95th St.

T New York City

e LN

MMMMMMMMMM

e
o 1

github.com/stereobooster/programming-languages-genealogical-tree

é
{

. ==

B
«wﬂé N
i e “ai-ﬁ’i\l’
1S @@‘/ §®
g s el
)| =% wo.lw@ =

=
(PLE
) l
L@ﬁ', 57
E&Q‘%?y i
github.com/stereobooster/programming-languages-genealogical-tree

There are many programming languages due to

intended use
history
habit

taste

]
s : >

| An_ci__e_nt‘h‘isry (myl_childhod)

—— sy sboe M

In this course, we'll be working
in two programming languages:

Why join the navy
if you can be a pirate!?

[X N J code.pyret.org/editor ¢ aC

v x ~ View Connect to Google Drive “' Stop

Things may look a little different! Check out the release notes for

Programming as a guest.

more details.

code.pyret.org/editor

[X N J code.pyret.org/editor ¢ aC

v x ~ View Connect to Google Drive “' Stop

»»> include image

»s circle(30, "solid", "red")

>

Programming as a guest.

[X N J code.pyret.org/editor ¢ aC

v x ~ View Connect to Google Drive “' Stop

»»> include image

»s circle(30, "solid", "red")

»s circle(30, "solid", "yellow")

>

Programming as a guest.

[X N J code.pyret.org/editor ¢ aC

v % ~ View Connect to Google Drive “' Stop

»»> include image

»s circle(30, "solid", "red")

»s circle(30, "solid", "yellow")

»»> above(circle(30, "solid", "red"), circle(30, "solid", "yellow

Programming as a guest.

[X N J code.pyret.org/editor ¢ aC

v % ~ View Connect to Google Drive “' Stop

» circle(30, "solid", "yellow")

»> above(circle(30, "solid", "red"), circle(30, "solid", "yellow

»> above(above(circle(30, "solid", "red"), circle(30, "solid", "

Programming as a guest.

Drawing pictures this way is fun — but also a lot of
typing.

Here's where things gets interesting:

We can define new words.

[X N J code.pyret.org/editor ¢

el
v x ~ View Connect to Google Drive “' Stop

»> above(above(g, y), r)
circle(30, "solid", "green")

circle(30, "solid", "yellow")
circle(30, "solid", "red")

< a
oo

>

Programming as a guest.

[X N J code.pyret.org/editor ¢

v x ~ View Connect to Google Drive “' Stop

»s traffic-light()
fun traffic-light():

g = circle(30, "solid", "green")
y = circle(30, "solid", "yellow")
r = circle(30, "solid", "red")
above(above(g, y), r)

end

Programming as a guest.

In extending the language, the programmer uses the

power of functional abstraction to create new
building blocks.

o000

v % v View Connect to Google Drive

fun traffic-light():

g = circle(30, "solid", "green")
y = circle(30, "solid", "yellow")
r = circle(30, "solid", "red")
above(above(g, y), r)

end

fun intersection():

beside(traffic-light(), traffic-light())
12 end

code.pyret.org/editor [

»> intersection()

>

Stop

Programming as a guest.

- x ~View Connect to Google Drive

1

2

3v fun traffic-light(size):

4 g = circle(size, "solid", "green")
5 y = circle(size, "solid", "yellow")
6 r = circle(size, "solid", "red")

7 above(above(g, y), r)

8 end

10 v fun intersection():

11 beside(traffic-light(), traffic-light())
12 end

Programming as a guest.

& code.pyret.org/editor [

»s traffic-light(10)

» traffic-1ight(60)

Stop

[X N J code.pyret.org/editor ¢

A % v View Connect to Google Drive “' Stop

- » intersection()
fun traffic-light(size):

g = circle(size, "solid", "green") This application expression errored:

y = circle(size, "solid", "yellow"))

r = circle(size, "solid", "red")

above(above(g, y), r)

end
X . 0 arguments were passed to the pperator.

10 v fun intersection():

beside(EFaffic=Tight(), traffic-light()) The operator evaluated to a function defined to accept 1 parameter:
12 end

definitions://:2:0-7:3"

fun traffic-light(size):

g = circle(size, "solid", "green")
y = circle(size, "solid", "yellow")
r = circle(size, "solid", "red")
above(above(g, y), r)

end

An application expression expects the number of parameters and arguments to
be the same.

(Show program evaluation trace...)

Programming as a guest.

[X N J code.pyret.org/editor ¢

v x ~ View Connect to Google Drive “' Stop

»> intersection(10)
fun traffic-light(size):

g = circle(size, "solid", "green")
y = circle(size, "solid", "yellow")
r = circle(size, "solid", "red") “
above(above(g, y), r)
end

|
fun intersection(size):

beside(traffic-light(size), traffic-light(size))
end

Programming as a guest.

What will we do in this course!

Identify and organize the data needed to solve a Data design
problem

Break a problem down into subproblems that can Programming
be solved with computations

Express computations over the data Programming/C5

Test those computations to make sure they’re doing Testing
what they're supposed to

0 Think about whether it's a good idea to solve the
problem, and how your solution might affect the
world around you.

This course teaches skills that will help you both in
computer science and beyond.

Three major units:

Tabular / data science data
Pyret

Other core CS data structures and how to program with them

Additional data structures and programming techniques Python

Goals

Apply fundamental data-organizations (called data
structures) to capture the information in a
computing problem.

Break down a computing question into manageable
smaller problems.

Write programs to compute answers to questions
over fundamental data structures.

Check whether your programs behave as intended/
required.

Course information

Class:
Monday & Wednesday, 9:00-10:15 a.m.
Sanders Classroom 006

Lab:
Friday, 9:00-11:00 a.m.

Sanders Classroom 006

[JCN J A courses:cs101-2022-02:t0p [Cc X | +

<« Cl @ O B =2 httpsyjwww.csvassar.edufcourses/cs101-2022- B ©¥ o v 0 & ®@ ¢ 0 =
& COMPUTER SCIENCE | VASSAR COLLEGE Search n E
CMPU-101 <sme o

P CS1: Problem-Solving and Abstraction

Schedule CMPU-101 Section 02

Coaching Hours Vassar College, Fall 2022
Syllabus / Course Wiki

Remote Access

Welcome to our course wiki and syllabus. It will be updated throughout the semester with

important course information, so check here regularly.
Resources

& berc rexy) Contact Information
@ Table Functions
Professor: Marc Smith

2 CPO (Pyret
@ (Pyret) Office: SP104.5

@ Pyret Style Guide Virtual: & Zoom
Phone: 8454377497
Email: mlsmith (best way to contact me!)

Course Coordinates

Lectures: Mon/Wed 9:00-10:15am in SC 006

Labs Fri 9gam-11am in SC 006

Office Hours: tbd; and by appointment

Wiki: @ https://www.cs.vassar.edu/courses/cs101-2022-02/top

Gradescope: & https://www.gradescope.com/

Computer
Science |
Vassar College

https://www.cs.vassar.edu/courses/csl01-2022-02/top

e
@ ™

C
N

syllabus.pdf X +

@ O B https://www.cs.vassar.edu/_media/courses/cs101-2022 w5

1 of9 — | 4+ Automatic Zoom v

CMPUIOI §02

Computer Science I:
Problem-Solving and Abstraction

Fall 2022

Monday 9:00-10:1§ a.m.
Wednesday 9:00-10:15 a.m.
Friday 9:00-1I:00 a.m.

Sanders Classroom 006

Professor Smith

csvassar.edu/courses/cs101-2022-02 /top

Overview

This course introduces fundamental concepts of computer science.
Its major goal is to introduce students to the principles of systematic
problem-solving through programming. We will explore the art and
science of problem-solving using the computer as a tool, writing pro-

- grams in Pyret — a simple yet powerful student learning language —

Grading

Weekly lab exercises

. Labs

Grading

Weekly programming assignments

. Labs

® Assignments

000 <>

& www.gradescope.com/courses/431841

all gradescope <=

CMPU-101-03

Computer Science I: Problem-
Solving and Abstraction

= Dashboard
[B Assignments
% Roster

@ Extensions

£# Course Settings

INSTRUCTOR

@ J. Gordon

COURSE ACTIONS

(= Leave Course

® Account

Fall 2022

CMPU-101-03

DESCRIPTION

Edit your course description on the Course Settings

THINGS TO DO

o Add students or staff to your course from the Roster page.

age.
peg o Create your first assignment from the Assignments page.

RELEASED

ACTIVE ASSIGNMENTS DUE (EDT)

SUBMISSIONS % GRADED PUBLISHED REGRADES

You currently have no assignments.

Create an assignment to get started.

Create Assignment

gradescope.com

www.cs.vassar.edu/integrity @]

{ COMPUTER SCIENCE | VASSAR COLLEGE Search

CS Wiki Home
Courses

Add policy

Dep Graph
CS Integrity Guide
Course Galleries
Events
History
People
Students
Resources
FAQs
Interactive Tree Idx

Dropboxes, etc..

Vassar CS Student Integrity Guide

This guide is designed to clarify & Vassar College’s academic integrity policy as
it applies to the Computer Science Department. Furthermore, it provides advice
on how to best navigate integrity issues in the context of the field, where source
code authorship is a central issue.

The goal of our computer science courses is to promote understanding of the
field, not competition among students. As such, students are encouraged to
discuss class material, ideas, sample exercises, etc., with other students.

However, when it comes to graded work (e.g., programming assignments,
programming labs, take-home exams), it is important to know when to
collaborate and when to work individually. Taking shortcuts, while seemingly
beneficial in the short term, will inevitably backfire later on. Conversely, the
challenges of working through a problem will pay off greatly in future courses
and postgraduate life, as they will enable students to be more independent in
their work.

==

1. Policy

1.1. Guidelines for individual work

<3NmEMEH

i= Table of Contents ~

Vassar CS Student Integrity
Guide
1. Policy
1.1. Guidelines for individual
work
1.2. Guidelines for
partnered/group work

2. Frequently Asked Questions
(FAQ)
3. Cautionary tales

3.1. Past examples of
academic integrity violations
3.2. Statistics

4. Other helpful resources

The goal of individual work is to assess the learning of each person in isolation. The guidelines are the following:

www.cs.vassar.edu/integrity

> % 0N

Grading

. Labs

® Assignments

Grading

Two midterm exams

. Labs

® Assignments

. Exam 1
. Exam 2

Grading

Regularly scheduled final exam

. Labs

® Assignments
©® EBxam 1
. Exam 2
@ Exam 3

“All through our education, we are being taught a kind of
reverse mindfulness. A kind of Future Studies where — via
the guise of mathematics, or literature, or history, or
computer programming, or French — we are being taught
to think of a time different to the time we are in. Exam
time. Job time. When-we-are-grown-up time.

To see the act of learning as something not for its own
sake but because of what it will get you reduces the
wonder of humanity. We are thinking, feeling, art-making,
knowledge-hungry, marvelous animals, who understand
ourselves and our world through the act of learning. It is
an end in itself. It has far more to offer than the things it
lets us write on application forms. It is a way to love living
right now.”

Matt Haig, Notes on a Nervous Planet

So...
Don’t just focus on grades.

Don’t just focus on what happens if you get an A in the
course.

Be here now.

If you worry about whether you understand what we’re
doing in class, in lab, and on the assignments, your grades
will take care of themselves.

Trust me.

[X X] . & dcic-world.org [aC

A Data-Centric
Introduction to Computing

Kathi Fisler Shriram Krishnamurthi Benjamin S. Lerner Joe Gibbs Politz

e~ ~——~——~ Version 2021-08-21

— ® o

© CCBY-NC-SA4.0 Cover art by Caitlin-Marie Miner Ong

dcic-world.org

draw so'wel|?

T+ must be an
innate 3'.“'...

I’" nevec \mJecsfanc]

how some people are
g——'f—?:enfcé...

®Sasah Andecsen

We've got a big journey ahead of us. | hope you're
excited!

Acknowledgments

This class incorporates material from:

Peter . Denning and Matti Tedre, Computational Thinking
Kathi Fisler and Doug Woos, Brown University

W. Daniel Hillis, The Pattern on the Stone

