
Problem-Solving and
Abstraction

Fall 2022

cmpu 101 § 02

Hello, computer

Hello, computer

We use computers every day as electronic black
boxes that do amazing things by

collecting,

storing,

retrieving, and

transforming data.

Computers only do very basic things.
Numerical calculations:

Add

Subtract

…

Symbolic manipulations

Compare two numbers

Substitute one string of letters and numbers for another

…

But when trillions of these simple operations are
arranged in the right order, amazing computations
can be carried out:

forecasting tomorrow’s weather

deciding where to drill for oil

finding which physical places are most likely to be visited by a person

figuring out which two people would make a great couple 😘😍

…

The magic of a computer is its ability to become
almost anything you can imagine…

…as long as you can explain exactly what that is.

When we program a computer to do something,
everything needs to be described precisely.

Say you tell an accounting program to bill your clients the amount
each owes.

Should the computer send a weekly bill for $0 to clients who owe
nothing?

If you tell the computer to send a threatening letter to clients who
haven’t paid, then clients who owe nothing will receive threatening
letters until they send you a payment of $0!

When computers behave intelligently, it’s because a
person used their intelligence to design an intelligent
program.

There are many programming languages we can use
to write these programs.

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

Grace Hopper

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

Us

There are many programming languages due to
intended use

history

habit

taste

Ancient history (my childhood)

In this course, we’ll be working
in two programming languages:

Why join the navy
if you can be a pirate?

famous Steve Jobs quote
—with apologies to Grace Hopper, who was actually a rear admiral in the Navy!

code.pyret.org/editor

Drawing pictures this way is fun – but also a lot of
typing.

Here’s where things gets interesting:

We can define new words.

In extending the language, the programmer uses the
power of functional abstraction to create new
building blocks.

What will we do in this course?

Identify and organize the data needed to solve a
problem

Break a problem down into subproblems that can
be solved with computations

Express computations over the data

Test those computations to make sure they’re doing
what they’re supposed to

Data design

Programming/CS

Testing

1

2

3

4

Programming

Think about whether it’s a good idea to solve the
problem, and how your solution might affect the
world around you.

0

This course teaches skills that will help you both in
computer science and beyond.

Three major units:
Tabular / data science data

Other core CS data structures and how to program with them

Additional data structures and programming techniques

Pyret

Python

Goals

Apply fundamental data-organizations (called data
structures) to capture the information in a
computing problem.

Break down a computing question into manageable
smaller problems.

Write programs to compute answers to questions
over fundamental data structures.

Check whether your programs behave as intended/
required.

Course information

Class:
Monday & Wednesday, 9:00–10:15 a.m.

Sanders Classroom 006

Lab:
Friday, 9:00–11:00 a.m.

Sanders Classroom 006

https://www.cs.vassar.edu/courses/cs101-2022-02/top

Grading

Weekly lab exercises

20%

20%

20%

20%

20%
Labs

Grading

20%

20%

20%

20%

20%
Labs
Assignments

Weekly programming assignments

gradescope.com

www.cs.vassar.edu/integrity

Grading

20%

20%

20%

20%

20%
Labs
Assignments

Grading

Two midterm exams

20%

20%

20%

20%

20%
Labs
Assignments
Exam 1
Exam 2

Grading

20%

20%

20%

20%

20%
Labs
Assignments
Exam 1
Exam 2
Exam 3

Regularly scheduled final exam

“All through our education, we are being taught a kind of
reverse mindfulness. A kind of Future Studies where – via
the guise of mathematics, or literature, or history, or
computer programming, or French – we are being taught
to think of a time different to the time we are in. Exam
time. Job time. When-we-are-grown-up time.

To see the act of learning as something not for its own
sake but because of what it will get you reduces the
wonder of humanity. We are thinking, feeling, art-making,
knowledge-hungry, marvelous animals, who understand
ourselves and our world through the act of learning. It is
an end in itself. It has far more to offer than the things it
lets us write on application forms. It is a way to love living
right now.”
Matt Haig, Notes on a Nervous Planet

So…
Don’t just focus on grades.
Don’t just focus on what happens if you get an A in the
course.
Be here now.
If you worry about whether you understand what we’re
doing in class, in lab, and on the assignments, your grades
will take care of themselves.
Trust me.

dcic-world.org

We’ve got a big journey ahead of us. I hope you’re
excited!

Acknowledgments

This class incorporates material from:
Peter J. Denning and Matti Tedre, Computational Thinking

Kathi Fisler and Doug Woos, Brown University

W. Daniel Hillis, The Pattern on the Stone

