CcMPU 101 § 51 - Computer Science |

Tables

12 September 2022

Lab 2

Due Friday

Assignment 2
Due Wednesday

Where are we!?

Here are some data that can be represented with
what we've seen so far:

Here are some data that can be represented with
what we've seen so far:

A picture of a dog Image

Here are some data that can be represented with
what we've seen so far:

A picture of a dog Image

The population of Azerbaijan Number

Here are some data that can be represented with
what we've seen so far:

A picture of a dog Image
The population of Azerbaijan Number

The complete text of the Baghavad Gita String

Here are some data that can be represented with
what we've seen so far:

A picture of a dog Image
The population of Azerbaijan Number
The complete text of the Baghavad Gita String

Whether or not | ate breakfast this morning Boolean

What if we wanted to write a program to look up
the population of any town in New York!

We can consider the last two census years — 2010 and 2020.

population(municipality :: String, year :: Number) —> Number:
+ "Return population of the municipality for the given year"
municipality == "New York":

year == 2010:
8175133
year == 2020:

8804190
raise("Bad year")
municipality == "Poughkeepsie™:
year == 2010:
43341
year == 2020:
45471

raise("Bad year")

raise("Bad municipality")

population(municipality :: String, year :: Number) —> Number:
+ "Return population of the municipality for the given year"
municipality == "New York":
year == 2010:
8175133
year == 2020:
8804190

raise("Bad year")

municipality == "Poughkeepsie™:
year == 2010:
43341
year == 2020:
45471

We can nest "if" statements!

raise("Bad year")

raise("Bad municipality")

population(municipality :: String, year :: Number) —> Number:
+ "Return population of the municipality for the given year"

municipality == "New York":
year == 2010:
8175133
year == 2020:

8804190
raise("Bad year")
municipality == "Poughkeepsie™:
year == 2010:
43341
year == 2020:
45471

raise("Bad year")

raise("Bad municipality")

population(municipality :: String, year :: Number) —> Number:
+ "Return population of the municipality for the given year"
municipality == "New York":

year == 2010:
8175133
year == 2020:

8804190
raise("Bad year")
municipality == "Poughkeepsie™:
year == 2010:
43341
year == 2020:
45471

raise("Bad year")

raise("Bad municipality")

This is not a great way to do this.

Why not!

population(municipality :: String, year :: Number) —> Number:
"Return population of the municipality for the given year”

nunicipality ==|"New York'}

year == 2010:
8175133

year == 2020:
8804190

raise("Bad year")

municipality == |"Poughkeepsie"|

year == 2010:
43341
year == 2020: "
45471 "\ \What about the

rest of the state?

raise("Bad year")

raise("Bad municipality")

population(municipality :: String, year :: Number) —> Number:
+ "Return population of the municipality for the given year"
municipality == "New York":

year == 2010:
8175133
year == 2020:

8804190
raise("Bad year")
municipality == "Poughkeepsie™:
year == 2010:
43341
year == 2020:
45471

raise("Bad year")

raise("Bad municipality")

KEY IDEA Separate data from computations.

Tables

Tables are used for tabular data,
like you might find in a
spreadsheet.

Population

Municipality

Adams
Adams
Addison
Addison
Afton
Afton
Airmont
Akron
Alabama
Albany
Albion
Albion
Albion
Alden
Alden
Alexander
Alexander
Alexandria
Alexandria Bay
Alfred
Alfred
Allegany
Allegany
Allen
Alma
Almond
Almond
Altamont
Altona
Amboy

9]

@ New York population

-

Class

Town
Village
Town
Village
Town
Village
Village
Village
Town
City
Town
Town
Village
Town
Village
Town
Village
Town
Village
Town
Village
Town
Village
Town
Town
Town
Village
Village
Town

Town

——

Lal v A
2010 2020
5,143 4,973
1,775 1,633
2,595 2,397
1,763 1,561
2,851 2,769
822 794
8,628 10,166
2,868 2,888
1,869 1,602
97,856 99,224
8,468 7,639
2,073 2,009
6,056 5,637
10,865 9,706
2,605 2,604
2,534 2,491
509 518
4,061 3,741
1,078 924
5,237 5,157
4,174 4,026
8,004 7,493
1,816 1,544
448 494
842 781
1,633 1,512
466 415
1,720 1,675
2,887 2,666
1,263 1,245

A__A~ o

-~ - e~

®

2>

To define a table in Pyret, we specity its contents
like so:

municipalities =
+ name, kind, pop-2010, pop—-2020
: "Adams", "Town", 5143, 4973
+ ""Adams", "Village"™, 1775, 1633
: "Addison', "Town", 2595, 2397
+ "Addison', "Village"™, 1763, 1561
: "Afton"™, "Town", 2851, 2769

To define a table in Pyret, we specify its contents

like so:

municipalities =

: nhame Kind |::

pop -2010 pop—2020 |: :

. "Adams) own"',

+ "Adams", "Village"™, 1775, 1633
: "Addison', "Town",

: "Addison',

. "Afton",

"Town",

5143,
2595, 2397

2851, 2769

As with functions, we can
specify the types for parts
of a table.

"Village"™, 1763, 1561

>>> municipalities

name

"Adams"

"Adams"

"Addison"

"Addison"

"Afton"

kind

"Town"

"Village"

"Town"

"Village"

"Town"

pop-2010

5143

1775

2595

1763

2851

pop-2020

4973

1633

2397

1561

2769

A bit later, we'll see how we can load tabular data
from outside Pyret so we don't need to enter it all
INto our program.

've already made a Pyret file that has the full
municipality data, which we can load:

shared-gdrive(“municipalities.arr”,
"1G9AKk1iPLQSKcc3kUn_8MjnPu29z8nylwA")

»»> municipalities

name

"Adams"

"Adams"

"Addison"

"Addison"

"Afton”

"Afton"

"Airmont"

"Akron"

"Alabama"

"Albany"

kind

"Town"

"Village"

"Town"

"Village"

"Town"

"Village"

"Village"

"Village"

"Town"

n City n

pop-2010

5143

1775

2595

1763

2851

822

8628

2868

1869

97856

pop-2020

4973

1633

2397

1561

2769

794

10166

2888

1602

99224

Click to show the remaining 1517 rows...

Now that we have the data in Pyret, we can write
programs to answer questions.

To get a row out of a table, specify its number,
beginning with O:
>>> municlipalities.row-n(0)

"name” "Adams” "kind" "Town" "pop-2010" 5143 "pop-2020" 4973

The data type returned by . row-n is a Row.

We can access a value in the row by specifying the
name of a column:

>>> municipalities.row-n(0)["“name"]
"Adams"

We can write a function that takes a row as input:

population-decreased(r :: Row) —> Boolean:
: "Return true 1f the municipality's
population went down between 2010 and 2020"
r["pop-2020"]1 < r["pop-2010"]

Filtering and ordering tables

To work with tables, we'll use a library that goes
with the textbook.

We need to tell Pyret to load it:

shared—gdrive('"dcic-2021",
"1wyQZj_LOqqV9IEKgr9aubRX2iqt2Gas8Ep")

One thing we might want to do is to get a version
of the table that only has cities where the
population has decreased.

filter—population-decreased(t :: Table) —> Table:
population-decreased(t.row-n(0)):
Keep row 0
population-decreased(t.row-n(1):
Keep row 1

Don't keep row 1

Don't keep row 0

We can use filter-with to return a new table of just the rows
where population-decreased evaluates to

filter—-with(municipalities, population-decreased)

We can also use filter-with to get just the towns:

is=town(r :: Row) —> Boolean:
"Check 1f a row 1s for a town"
rl"kind"] == "Town"

filter-with(municipalities, is—town)

We can also order the data by the values in one
column:

order-by(municipalities, ''pop-2020",

We can also order the data by the values in one
column:

order-by(municipalities, "pop-2020",)

[

This means sort descending;

true means ascending.

And we can combine all of these operations.

How would we get the town with the smallest
population?

order-by(
filter-with(municipalities, is-town),
""oop—-2020",
) . row—n(0)

Example: Population change

PROBLEM: Figure out what the fastest-growing towns
are in New York.

Subtasks:
Filtering out the cities
Calculating percentage change in population
Building a column for percentage change

Sorting on that column in descending order

percent-change(r :: Row) —> Number:
: "'Compute the percentage change for the

population of the given municipality between 2010 and
2020"

(r["pop-2020"] - r["pop-2010"1) /
ri'"pop—2010"]
end

towns = filter-with(municipalities, is—-town)

towns—-with—-percent—-change =
build-column(towns, "percent-change', percent-change)

fastest—growing—-towns =

order-by(towns-with-percent-change,
"nercent-change'", false)

fastest—growing—-towns

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Doug Woos, Brown University

