
Tables

12 September 2022

CMPU 101 § 51 · Computer Science I

Lab 2

Due Friday

Assignment 2

Due Wednesday

Where are we?

Here are some data that can be represented with
what we’ve seen so far:

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog	 Image

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog	 Image

The population of Azerbaijan	 Number

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog	 Image

The population of Azerbaijan	 Number

The complete text of the Baghavad Gita	 String

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog	 Image

The population of Azerbaijan	 Number

The complete text of the Baghavad Gita	 String

Whether or not I ate breakfast this morning	 Boolean

What if we wanted to write a program to look up
the population of any town in New York?

We can consider the last two census years – 2010 and 2020.

fun population(municipality :: String, year :: Number) -> Number:

 doc: "Return population of the municipality for the given year"

 if municipality == "New York":

 if year == 2010:

 8175133

 else if year == 2020:

 8804190

 else:

 raise("Bad year")

 end

 else if municipality == "Poughkeepsie":

 if year == 2010:

 43341

 else if year == 2020:

 45471

 else:

 raise("Bad year")

 end

 else:

 raise("Bad municipality")

 end

end

fun population(municipality :: String, year :: Number) -> Number:

 doc: "Return population of the municipality for the given year"

 if municipality == "New York":

 if year == 2010:

 8175133

 else if year == 2020:

 8804190

 else:

 raise("Bad year")

 end

 else if municipality == "Poughkeepsie":

 if year == 2010:

 43341

 else if year == 2020:

 45471

 else:

 raise("Bad year")

 end

 else:

 raise("Bad municipality")

 end

end

We can nest "if" statements!

fun population(municipality :: String, year :: Number) -> Number:

 doc: "Return population of the municipality for the given year"

 if municipality == "New York":

 if year == 2010:

 8175133

 else if year == 2020:

 8804190

 else:

 raise("Bad year")

 end

 else if municipality == "Poughkeepsie":

 if year == 2010:

 43341

 else if year == 2020:

 45471

 else:

 raise("Bad year")

 end

 else:

 raise("Bad municipality")

 end

end

fun population(municipality :: String, year :: Number) -> Number:

 doc: "Return population of the municipality for the given year"

 if municipality == "New York":

 if year == 2010:

 8175133

 else if year == 2020:

 8804190

 else:

 raise("Bad year")

 end

 else if municipality == "Poughkeepsie":

 if year == 2010:

 43341

 else if year == 2020:

 45471

 else:

 raise("Bad year")

 end

 else:

 raise("Bad municipality")

 end

end

This is not a great way to do this.

Why not?

fun population(municipality :: String, year :: Number) -> Number:

 doc: "Return population of the municipality for the given year"

 if municipality == "New York":

 if year == 2010:

 8175133

 else if year == 2020:

 8804190

 else:

 raise("Bad year")

 end

 else if municipality == "Poughkeepsie":

 if year == 2010:

 43341

 else if year == 2020:

 45471

 else:

 raise("Bad year")

 end

 else:

 raise("Bad municipality")

 end

end

What about the
rest of the state?

fun population(municipality :: String, year :: Number) -> Number:

 doc: "Return population of the municipality for the given year"

 if municipality == "New York":

 if year == 2010:

 8175133

 else if year == 2020:

 8804190

 else:

 raise("Bad year")

 end

 else if municipality == "Poughkeepsie":

 if year == 2010:

 43341

 else if year == 2020:

 45471

 else:

 raise("Bad year")

 end

 else:

 raise("Bad municipality")

 end

end

KEY IDEA Separate data from computations.

Tables

Tables are used for tabular data,
like you might find in a
spreadsheet.

To define a table in Pyret, we specify its contents
like so:

municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Adams", "Town", 5143, 4973

 row: "Adams", "Village", 1775, 1633

 row: "Addison", "Town", 2595, 2397

 row: "Addison", "Village", 1763, 1561

 row: "Afton", "Town", 2851, 2769

 ...

 end

To define a table in Pyret, we specify its contents
like so:

municipalities =

 table: name :: String, kind :: String,

 pop-2010 :: Number, pop-2020 :: Number

 row: "Adams", "Town", 5143, 4973

 row: "Adams", "Village", 1775, 1633

 row: "Addison", "Town", 2595, 2397

 row: "Addison", "Village", 1763, 1561

 row: "Afton", "Town", 2851, 2769

 ...

 end

As with functions, we can
specify the types for parts
of a table.

››› municipalities

A bit later, we’ll see how we can load tabular data
from outside Pyret so we don’t need to enter it all
into our program.

I’ve already made a Pyret file that has the full
municipality data, which we can load:

include shared-gdrive(“municipalities.arr”,

 "1G9AkiPLQSKcc3kUn_8MjnPu29z8ny1wA")

Now that we have the data in Pyret, we can write
programs to answer questions.

To get a row out of a table, specify its number,
beginning with 0:

››› municipalities.row-n(0)

The data type returned by .row-n is a Row.

We can access a value in the row by specifying the
name of a column:

››› municipalities.row-n(0)["name"]

"Adams"

We can write a function that takes a row as input:

fun population-decreased(r :: Row) -> Boolean:

 doc: "Return true if the municipality's
population went down between 2010 and 2020"

 r["pop-2020"] < r["pop-2010"]

end

Filtering and ordering tables

To work with tables, we’ll use a library that goes
with the textbook.

We need to tell Pyret to load it:

include shared-gdrive("dcic-2021",

 "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

One thing we might want to do is to get a version
of the table that only has cities where the
population has decreased.

fun filter-population-decreased(t :: Table) -> Table:

 if population-decreased(t.row-n(0)):

 ... # Keep row 0

 if population-decreased(t.row-n(1):

 ... # Keep row 1

 else:

 ... # Don't keep row 1

 end

 else:

 ... # Don't keep row 0

 end

end

We can use filter-with to return a new table of just the rows
where population-decreased evaluates to true:

filter-with(municipalities, population-decreased)

We can also use filter-with to get just the towns:

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

filter-with(municipalities, is-town)

We can also order the data by the values in one
column:

order-by(municipalities, "pop-2020", false)

We can also order the data by the values in one
column:

order-by(municipalities, "pop-2020", false)

This means sort descending;  
true means ascending.

And we can combine all of these operations.

How would we get the town with the smallest
population?

order-by(

 filter-with(municipalities, is-town),

 "pop-2020",

 true).row-n(0)

Example: Population change

PROBLEM: Figure out what the fastest-growing towns
are in New York.

Subtasks:

Filtering out the cities

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the
population of the given municipality between 2010 and
2020"

 (r["pop-2020"] - r["pop-2010"]) /

 r["pop-2010"]

end

towns = filter-with(municipalities, is-town)

towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

fastest-growing-towns =

 order-by(towns-with-percent-change,

 "percent-change", false)

fastest-growing-towns

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Doug Woos, Brown University

