
Working with Tables

14 September 2022

CMPU 101 § 51 · Computer Science I

Lab 2

Due Friday

Assignment 2

Due Wednesday

Where are we?

Lots of real-world data is
naturally represented as tables.

Lots of real-world data is
naturally represented as tables.

municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Adams", "Town", 5143, 4973

 row: "Adams", "Village", 1775, 1633

 row: "Addison", "Town", 2595, 2397

 row: "Addison", "Village", 1763, 1561

 row: "Afton", "Town", 2851, 2769

 ...

 end

Lots of real-world data is
naturally represented as tables.

››› municipalities

Recap: Accessing parts of a table

To get a particular row from a table, we use its
numeric index n, counting from 0:

⟨table⟩.row-n(0)

››› municipalities

››› municipalities.row-n(0)

››› municipalities

››› municipalities.row-n(1)

››› municipalities

››› municipalities.row-n(2)

To get a particular column’s value from a row, we
specify the column name using square brackets:

⟨row⟩["column name"]

››› municipalities.row-n(0)

››› municipalities.row-n(0)

››› municipalities.row-n(0)["name"]

"Adams"

››› municipalities.row-n(0)["pop-2020"]

4973

Recap: Ordering tables

To do more with tabular data, first include the
textbook library:

include shared-gdrive("dcic-2021",

 "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

We can transform tabular data to get a particular
view. E.g., to order the rows from the highest 2010
population to the lowest:

››› order-by(municipalities, "pop-2010", false)

We can transform tabular data to get a particular
view. E.g., to order the rows from the highest 2010
population to the lowest:

››› order-by(municipalities, "pop-2010", false)

lowest

highest

true

››› municipalities.row-n(0)

››› order-by(municipalities, "pop-2010", false).row-n(0)

This makes it easy to get the row for the municipality
with the highest 2010 population.

››› municipalities.row-n(0)

››› order-by(municipalities, "pop-2010", false).row-n(0)

››› ordered = order-by(municipalities, "pop-2010", false)

››› ordered.row-n(0)

Or, to make it more readable, we can split
the computation into parts, using names

››› ordered = order-by(municipalities, "pop-2010", false)

››› biggest = ordered.row-n(0)

››› biggest["pop-2010"]

8175133

So, to see the 2010 population for the biggest
municipality, we could write the computation like this.

Recap: Filtering tables

Make a table keeping only those municipalities with a
2010 population over 10,000:

fun big-muni(r :: Row) -> Boolean:

 doc: "Return true if the municipality had over
10,000 people had in 2010"

 r["pop-2010"] > 10000

end

››› filter-with(municipalities, big-muni)

Building columns

At the end of last class, we saw that we can also
have functions on rows that don’t return Booleans:

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the
population of the given municipality between 2010
and 2020"

 (r["pop-2020"] - r["pop-2010"]) /

 r["pop-2010"]

end

And we can use such functions to compute the
values for a new column:

build-column(municipalities, "percent-change",

 percent-change)

And we can use such functions to compute the
values for a new column:

build-column(municipalities, "percent-change",

 percent-change) Name of the new column

And we can use such functions to compute the
values for a new column:

build-column(municipalities, "percent-change",

 percent-change) Name of the new column
Name of the function to use

So, if we have this table, t,

then the result of calling build-column(t, "c",
builder) is:

a b

"dog" 2

"cat" 3

a b c

"dog" 2 builder(<"dog", 2>)

"cat" 3 builder(<"cat", 3>)

For example, if we have

fun builder(r :: Row) -> Number:

 string-length(row["a"]) + row["b"]

end

Then we end up with the following table:

a b c

"dog" 2 5

"cat" 3 6

The values that the builder function returns will be
the values in the new column we’re adding to each
row.

build-column ::

 (t :: Table,

 colname :: String,

 builder :: (Row -> A))

 -> Table

build-column ::

 (t :: Table,

 colname :: String,

 builder :: (Row -> A))

 -> Table

What’s this argument?

This is the second time we’ve seen a function that
takes a function as one of its inputs!

Both filter-with and build-column need a helper
function that tells them how to do what we want.

Just as a function is an abstraction over specific computations, filter-
with and build-column are abstractions over more specific functions.

They provide the common functionality and the arguments we give
provide the specifics.

Interlude: Functional programming

We can

sort the rows a table with order-with,

select certain rows using filter-with, and

add a new column of values with build-column

but none of these functions change the original
table!

Just as the expression 2 + 3 doesn’t change the
value of 2 or of 3, functions that take a table as
input don’t change the original table.

Instead, they return a new table.

This is a paradigm called functional programming.

If you have experience working in other languages, this may seem
strange, but it can be extremely useful!

We’ll explore the idea of functional programming more in the coming
weeks.

Loading Google Sheets into Pyret

We’ve seen that it’s inconvenient to type a large
table into a Pyret program. Last time, we loaded the
municipalities table from a separate Pyret file that I
prepared ahead of time.

More often, we’ll want to load our data from
outside of Pyret.

https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mXH-jQw0KGQbLJnJmdfWjb-Ra1xf8EIwYtm3o3ajyao/edit?usp=sharing

include gdrive-sheets

The ID of the Google Sheets file, which appears

in the URL

ssid = "1yZ-TeVJbmMyOGzVVI3FWxRS8Sd6uu-rrB5b-WIEdRAY"

spreadsheet = load-spreadsheet(ssid)

A spreadsheet might have more than one sheet (the
tabs at the bottom of Google Sheets). But, in this
case, we just have one:

››› spreadsheet

spreadsheet("municipalities")

To load a table from a spreadsheet, we need to tell
Pyret which sheet to load it from and what we want
the columns to be called (which can be different
from what is in the spreadsheet):

municipalities =

 load-table:

 name :: String, kind :: String,

 pop-2010 :: Number, pop-2020 :: Number

 source:

 spreadsheet.sheet-by-name("municipalities",

 true)

 end

To load a table from a spreadsheet, we need to tell
Pyret which sheet to load it from and what we want
the columns to be called (which can be different
from what is in the spreadsheet):

municipalities =

 load-table:

 name :: String, kind :: String,

 pop-2010 :: Number, pop-2020 :: Number

 source:

 spreadsheet.sheet-by-name("municipalities",

 true)

 end

This means there’s a header row that Pyret should skip

Using our table loaded from Google Sheets, let’s
revisit our code from last class for finding the fastest
growing towns.

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of the
given municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

towns = filter-with(municipalities, is-town)

towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

fastest-growing-towns =

 order-by(towns-with-percent-change,

 "percent-change", false)

fastest-growing-towns

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of the
given municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

towns = filter-with(municipalities, is-town)

towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

fastest-growing-towns =

 order-by(towns-with-percent-change,

 "percent-change", false)

fastest-growing-towns

Let’s take these loose
expressions and put
them in a function!

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of the
given municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

fun fastest-growing-towns(munis :: Table) -> Table:

 doc: "Return a table of towns ordered by their growth"

 towns = filter-with(munis, is-town)

 towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

 order-by(towns-with-percent-change, "percent-change", false)

end

We’ve done a bit of a bad thing here: We’ve written
three functions, but we don't have tests for any of
them!

Let’s see how we can rectify this.

Testing table functions

We can test table program by using test tables.

These are tables that have the same structure as the
table for our real data, but which are smaller and
contain data that are useful for testing.

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

Let’s see how we use these test data to write
examples for our table functions.

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

where:

 is-town(test-municipalities.row-n(0)) is false

 is-town(test-municipalities.row-n(1)) is true

 is-town(test-municipalities.row-n(2)) is false

end

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of the given
municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of the given
municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

where:

 percent-change(test-municipalities.row-n(0)) is 0.01

 percent-change(test-municipalities.row-n(1)) is 0.02

 percent-change(test-municipalities.row-n(2)) is -0.01

end

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

fun fastest-growing-towns(munis :: Table) -> Table:

 doc: "Return a table of towns ordered by their growth"

 towns = filter-with(munis, is-town)

 towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

 order-by(towns-with-percent-change, "percent-change", false)

end

test-municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bee", "Village", 100, 99

 row: "Hobbiton", "Town", 50, 54

 end

fun fastest-growing-towns(munis :: Table) -> Table:

 ...

where:

 test-municipalities-after =

 table: name, kind, pop-2010, pop-2020, percent-change

 row: "Hobbiton", "Town", 50, 54, 0.08

 row: "Lake-town", "Town", 100, 102, 0.02

 end

 fastest-growing-towns(test-municipalities) is test-municipalities-after

end

Don’t just copy the function’s
output; think through what it’s
supposed to do!

Program from today’s class:

https://code.pyret.org/editor#share=1rkjGgObH5sBbbOV2XzRRQqM3ixFCiuxd&v=6d122f0

https://code.pyret.org/editor#share=1rkjGgObH5sBbbOV2XzRRQqM3ixFCiuxd&v=6d122f0

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Doug Woos, Brown University

