cMpPU 101 § 2 - Computer Science |

Table Sanitizing and Processing

21 September 2022




Where are we!?



Last class, we downloaded a real data set — the
London Fire Brigade’s animal rescues — as a CSV file.

We imported it to Google Sheets and pruned it to
just the columns we were interested in.

Then we loaded the data in Pyret and began to
investigate what we had and what issues we'd need
to fix.



ward borough

some("Crystal Palace & Upper Norwood"

) some("Croydon")
some( "Woodside") some("Croydon")
some( "Carshalton Central") some( "Sutton")
some( "Harefield") some("Hillingdon")
some( "Gooshays") some( "Havering")

some( "Barking and Dagenham"

some("Alibon") )

some("Cathall") some("Waltham Forest")
some( "Wanstead") some( "Redbridge")
some( "New Addington North") some( "Croydon")

some("Lea Bridge") some( "Hackney")




We'll sanitize the "borough”™ and “ward” fields, which contain blanks:

gdrive-sheets

This provides the sanitizer functions

shared—gdrive('"dcic-2021", "1wyQZj L0gqV9EKgr9aubRX2igt2Ga8Ep")

ssid = "110hS5voB-Y-CezClAphyIdc90t _Melz3tAOTACemOa4d™"
spreadsheet = load-spreadsheet(ssid)

rescue—-data =

datetime, year, description, animal-group,
property-type, property-category, service-kind,
service-type, ward, borough, station—-name, street

: spreadsheet.sheet-by—-name("rescues—-simple", )
string-sanitizer

string-sanitizer



ward

"Crystal Palace & Upper Norwood"

"Woodside"

"Carshalton Central”

"Harefield"

"Gooshays"”

"Alibon"

"Cathall”

"Wanstead"

"New Addington North"

"Lea Bridge"

borough

"Croydon™

"Croydon™

"Sutton”

"Hillingdon"

"Havering"

"Barking and Dagenham"”

"Waltham Forest"

"Redbridge”

"Croydon™

"Hackney"




L ooking for problems



count(rescue-data-clean, "borough')

value count
What are these rows?

e 11 What should we do with
them?

"WESTMINSTER" 152

"HAMMERSMITH AND FULHAM" 119

"CITY OF LONDON" 5

"RICHMOND UPON THAMES" 130

"HARROW" 101

"MERTON" 93

"SOUTHWARK™ 187



no-borough(r :: Row) —> Boolean:
: "Return true 1if the borough column 1s empty for
a given row"
r["borough"] ==

filter-with(rescue-data, no-borough)

ward borough station-name street
"Essex" "COOLGARDIE AVENUE"
" " "Essex" "PALMERSTON ROAD"
"Essex" "BRADWELL ROAD"
"Chingford" "RANGERS ROAD"
"Kent" "MEAD WALL"

"Buckinghamshire" "GEORGE GREEN ROAD"



Transit

| Satellite

Directions

I Trent
CounterP‘ar

". .IA\-.
\ N\
\ ™\
\
\
-
{1

., Hampstead H‘e“’at |
| i\ _-"I lé‘f‘

a1 KENSINGTON »
| ANlD\CHELSEA

: 13{ ShOW

<  Q Coolgardie Ave

L

iver Lea

R

./ /

;p?%d

»)
a Coolgardie Ave @ o |

Coolgardie Ave, London
nault Forest
; 'ry Park
Blllet Road? [, '

‘I‘I,-" - = — ./,»" - “
¥ ! ] ", s
¥ | ',-'{. ) [ ! N -\"'—-_;___ . __-"’,II'--
J “‘ 1 ! I." : . | R | .'I _A--"'f.‘ } I'll _
~ A N | ~ 4 YN ~
J / - 4 L \ “,!- N\ B
waltiam— Y. Y
.'v:"' y _,,5"'.-‘ . p e - ---:'..' / ' | o & 4 ll_’——_ “I II".
f . ] { — ) 1“
/ - ~ N f — y .
! A |I / = 4 \ '
‘I

FORESF |

Bedfords Park -
Nature Dlscovery
Centre

| TN
~Old Church -

9 ROMFORD

' HACKNEYf\ A\ ..
A ‘ Queen Ellzabeth
\ ,olym“’p‘l"c‘Pa rk__ﬂ

"'. ? ’ _l ___.-—'_'---

ey Of
_LONDON?

Lrttla Crnd

o064°

Pﬁ rfleet ‘ i



Directions

4 | Q rangers road, chingford

Transit Satellite

- 0ngar~Road‘ |
" A " /

Ranger's Road @

Ranger's Road, Loughton

Bedfords Park | \ >y
/ ‘—\z

o~

Nature Dlscoveryr o

, IH ﬂm //L } | A ‘.'r '
,, Y R

EVIIER)
[ Jl"I Ill\ “ : .lv

ou

\

&

peoy

i}

ony

'|

° 0 STRATFORDH

= R T\ /WESTHAM
f MBETHNAL-

l - GREEN

Q WOC’LWICH e




Directions Satellite

Transit

= 4 \./O\ george green road @j/ th Map

T eas

1
|
|- B
—
.

,-/

" Zal A p; i Y

Seer Green

l

consfleld \ [

P
— w
| 2

Y | — ‘,’~°
T EF Y [ '\ woop GREENq

VaRoag ot NOREL e STAREEE (T 7 HARINGEY

[| g 4{ 7 | —

| W

| BlackPark H ILLINGDO N/ —*rWEM BLEY '-

 Country ParcN UXBRIDGE =%
Farnham Royal Y > A B =
| 4\ i IIII

- i 1 f

B

GTO N *L_X? \;:_'f;"

|1
2N

= "*l slu N

J e H |
’r'_ 7

George Green Road ® L
George Green Road, George Green, Slough =S f"

AND CHEL'SE'A‘

f —
' i -
: \
\ |
\ ! ll‘
\ ! \
\ \

A HAMMERSMITH~
__AND DEFUIHAM |

Heathrow b o\ |
o “AyPortiR) - Y b

RICHMOND. —ﬁ' »
UPON‘ATHAMESF =\

ondsor
Great Park

AS hfo rd Common _e
' Sunbury-on-Thames7

S unningdale

B vlrgmia Water*

"W

| Show




ri""borough"] ==

ward

no-borough(r :: Row) —> Boolean:
: "Return true 1if the borough column 1s empty for
a given row"

filter-with(rescue-data, no-borough)

borough station-name

"Essex"

nmn llEssexll

"Essex"

"Chingford"

"Kent"

"Buckinghamshire"

Street

"COOLGARDIE AVENUE"

"PALMERSTON ROAD"

"BRADWELL ROAD"

"RANGERS ROAD"

"MEAD WALL™

"GEORGE GREEN ROAD"

Look like places outside of
London itself or where the

location is vague?




If we make a visualization that shows a count for "",
people will rightly think it's a bug. Ve should give a
more meaningful value for these rows.



The transform-column function is used to clean up
or otherwise alter the data in a single column of a
table.

't returns a new table by applying its function
argsument to each value of the given column.



empty-to-other(s :: String) -> String:
+ "Return the string or 'Other' 1if the string 1s
empty."
S ==
"Other"

S

rescue—-data-clean =
transform—co lumn(
transform—-column(rescue-data,
"borough", empty-to-other),
"ward", empty-to-other)



order-by(
count(rescue-data-clean, "borough"),

"value", )

value count
"BARKING AND DAGENHAM" 98
"BARNET" 198
"BEXLEY" 130
"BRENT" 142
"BROMLEY" 174
"Barking and Dagenham" 116

"Barnet"” 151



order-by (
count(rescue-data-clean, "borough"),
"value", true)

value count ok
"BARKING AND DAGENHAM" 98
"BARNET" 198
"BEXLEY" 130
"BRENT" 142
"BROMLEY" 174
"Barking and Dagenham" 116

"Barnet" 151



Some of the boroughs are ALL UPPERCASE and
others are Title Case.

"Islington" and "ISLINGTON" will be treated by
Pyret as distinct values, which will throw off our
counts!



rescue—data—-clean =
transform—co lumn(
transform—co lumn(

transform—column (

This is getting a bit deep.

transform—-column(rescue—-data,
"borough", empty-to-other),
"ward", empty-to-other),
"borough", string-to-upper),
"ward", string-to-upper)



clean-table(t :: Table) —> Table:
"Fix various columns from the animal rescue spreadsheet"

# Change the blank strings to "Other"
tl =
transform—column (
transform—-column(t,
"borough'", empty-to-other),
"ward", empty-to-other)

# Change strings to all uppercase
t2 =
transform—column(
transform—-column(tl,
"borough", string-to-upper),
"ward", string-to-upper)

T2

rescue—data-clean = clean-table(rescue—-data)



Now we’ll want to use rescue-data-clean rather
than rescue-data for the rest of our work.

We usually maintain separate names for the initially-
loaded table, the cleaned table, and for significant
variations for analysis purposes.



Data analysis



count(rescue-data-clean, "borough')

value count
"OTHER" 11
"TANDRIDGE" 1
"BROXBOURNE" 1
"BRENTWOOD" 1
"CITY OF LONDON" 13
"ENFIELD" 394
"MERTON" 172

"BRENT" 246



order-by (
count(rescue-data-clean, "borough'),

"value", )

value count
"BARKING AND DAGENHAM" 214
"BARNET" 349
"BEXLEY" 236
"BRENT" 246
"BRENTWOOD" 1
"BROMLEY" 309

"BROXBOURNE"™ 1



order-by (
count(rescue-data-clean, "borough'),

"name", )
value count
"ENFIELD" 394
"CROYDON" 358
"BARNET" 349
"SOUTHWARK" 347
"TOWER HAMLETS" 336
"HARINGEY" 322

"NEWHAM" 316



borough—-counts =

order-by(

count(rescue-data-clean, '"borough"),

""'value",

true)

»>> ple-chart(borough-counts, "value",

@ BARKING AND DAGENHAM
@ BARNET

@) BEXLEY

@ BRENT

@ BRENTWOOD

@ BROMLEY

® BROXBOURNE

® CAMDEN

@ CITY OF LONDON

@® CROYDON

@ EALING

@® ENFIELD

® EPPING FOREST

@ GREENWICH

@ HACKNEY

® HAMMERSMITH AND FULHAM

13V

"count"')



What about getting a pie chart for the types of animals? Well, we
could do

animal—-counts =

order-by(
count(rescue-data-clean, "animal-group"),
"value", )
and then

pie-chart(animal-counts, '"value', "count')



What about getting a pie chart for the types of animals? Well, we
could do

animal—-counts =

order-by(
count(rescue-data-clean, "animal-group"),
"value", )
and then

pie-chart(animal-counts, '"value', "count')

Stop!




Rather than copy and paste long expressions, we
should define a function:

pie-chart-counts(t :: Table, col :: String) —> Image:
: "Make a pie chart of the number of times each value occurs in the
specified table column”
counts = order-by(count(t, col), "value", )
pie-chart(counts, "value", "count")



pie-chart-counts(rescue-data-clean, "animal-group")

® Bird
@ Budgie
@ Bull

® Goat

@ Hamster
@ Hedgehog
@ Horse

® Lamb

® Lizard

12 V

Cat
4,232 (48.4%)



The cliché may be true!




But we see a familiar problem — we have a count for
"Cat" and for "cat".

Back to cleaning datal



clean-table(t :: Table) —> Table:

+ "Fix various columns from the animal rescue spreadsheet”

# Change the blank strings to "Other"
tl =
transform—-column
transform—-column(t,
"borough", empty-to-other),
"ward", empty-to-other)

# Change strings to all uppercase
t2 =
transform—column (
transform—column (

transform—-column(tl,
"borough'", string-to-upper),
"ward'", string-to-upper),
"animal-group", string-to-upper)

T2

rescue—data-clean = clean-table(rescue-data)

Make the animal types uppercase

just like the boroughs and wards.




pie-chart-counts(rescue-data-clean, "animal-group")

® BIRD

® BUDGIE
@ BULL

@ CAT

® cow

® DEER

® DOG

® FERRET
® FISH

@ FOX

@ GOAT

® HAMSTER
® HEDGEHOG
@ HORSE
® LAVB

® LIZARD

12 V

CAT
4,252 (48.6%)



Ok, | have to know: How many of those cats are
actually stuck up trees?



About 15% of the time, the "description" column
is "Redacted", but when it isn't, this gives us a way
to approximate the question.



Plan

Get just the rows about cats
Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we'd better put the up-a-tree-
or-not answer into a table.



is-cat(r :: Row) —> Boolean:
"Return true 1f the row 1s about rescuing a
cat”
rl"animal-group"] == "CAT"

just-cats = filter-with(rescue-data-clean, is-cat)



Plan

¢ Get just the rows about cats
Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we'd better put the up-a-tree-
or-not answer into a table.



up-tree(r :: Row) —> String:
"Return string indicating whether or not cat 1s up
a tree"
desc = string-to-lower(r["description"])

string—-contains(desc, "tree"):
"up a tree!™

"not up a tree"

cats—-who—-may—-be—-up—-trees =
build-column(just-cats, "up-tree'", up-tree)



up-tree(r :: Row) —> String:
"Return string indicating whether or not cat 1s up
a tree”

string—-contains(desc, "tree"):

"up a tree!” This handles descriptions

with "TREE" or "Tree"

"not up a tree"

cats—-who—-may—-be—-up—-trees =
build-column(just-cats, "up-tree'", up-tree)




Plan

¢ Get just the rows about cats
« Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we'd better put the up-a-tree-
or-not answer into a table.



pie-chart-counts(cats—-who-may-be-up-trees, "up-tree")



Plan

¢ Get just the rows about cats

« Figure out for each row if it involves a tree

 Make a pie chart

Need a column to count values in, so we'd better put the up-a-tree-
or-not answer into a table.



® not up a tree
® vup a tree!




Slander!




Changes



That's enough pie for now.

L et’s make a bar chart to see the number of animal
rescues per year.



freq-bar-chart(rescue-data, "year™)

count

900

800

700

600

500

400

300

200

100

2009

2010

2011

2012

2013

2014

2015 2016

year

2017

2018

2019

2020

2021

2022




freq-bar-chart(rescue-data, "year™)

count

900

800

700

600

500

400

300

200

100

0

2009

2010

2011

2012

2013

2014

2015 2016

year

2017

2018

2019

2020

2021

)

2022

Partial year
of data!




We can split the data into pre-2020 and 2020-2022
to explore this surge.

plague-year(r :: Row) —> Boolean:
: "Return true 1if the row takes place during the COVID pandemic
(rounding up to full years)"
(r["year"] >= 2020) (r["year"] <= 2022)

rescue-data-plague = filter—with(rescue-data-clean, plague-year)

not-plague(r :: Row) —> Boolean:
: "Return true if the row 1s from a year entirely before or after
the COVID pandemic"

not (plague-year(r))

rescue—data-not-plague = filter—with(rescue-data—-clean, not-plague)



® Boat

@ Dwelling

" Non Residential
@ Other Residential
@ Outdoor

@ Outdoor Structure
® Road Vehicle

@ Boat

@ Dwelling

& Non Residential
@ Other Residential
@ Outdoor

@ Outdoor Structure
@ Road Vehicle




What else could we compare for these time
periods!?



Class code:
https://tinyurl.com/101-2022-09-21


https://tinyurl.com/101-2022-09-21

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University



