
Table Sanitizing and Processing

21 September 2022

CMPU 101 § 2 · Computer Science I

Where are we?

Last class, we downloaded a real data set – the
London Fire Brigade’s animal rescues – as a CSV file.

We imported it to Google Sheets and pruned it to
just the columns we were interested in.

Then we loaded the data in Pyret and began to
investigate what we had and what issues we’d need
to fix.

We’ll sanitize the “borough” and “ward” fields, which contain blanks:

include gdrive-sheets

include data-source

include shared-gdrive("dcic-2021", "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

ssid = "1iohS5voB-Y-CezClAphyIdc90t_Me1z3tA0TACemOa4"

spreadsheet = load-spreadsheet(ssid)

rescue-data =

 load-table:

 datetime, year, description, animal-group,

 property-type, property-category, service-kind,

 service-type, ward, borough, station-name, street

 source: spreadsheet.sheet-by-name("rescues-simple", true)

 sanitize borough using string-sanitizer

 sanitize ward using string-sanitizer

 end

This provides the sanitizer functions

Looking for problems

››› count(rescue-data-clean, "borough")

What are these rows?
What should we do with
them?

fun no-borough(r :: Row) -> Boolean:

 doc: "Return true if the borough column is empty for
a given row"

 r["borough"] == ""

end

››› filter-with(rescue-data, no-borough)

fun no-borough(r :: Row) -> Boolean:

 doc: "Return true if the borough column is empty for
a given row"

 r["borough"] == ""

end

››› filter-with(rescue-data, no-borough)

Look like places outside of
London itself or where the
location is vague?

If we make a visualization that shows a count for "",
people will rightly think it’s a bug. We should give a
more meaningful value for these rows.

The transform-column function is used to clean up
or otherwise alter the data in a single column of a
table.

It returns a new table by applying its function
argument to each value of the given column.

fun empty-to-other(s :: String) -> String:

 doc: "Return the string or 'Other' if the string is
empty."

 if s == "":

 "Other"

 else:

 s

 end

end

rescue-data-clean =

 transform-column(

 transform-column(rescue-data,

 "borough", empty-to-other),

 "ward", empty-to-other)

order-by(

 count(rescue-data-clean, "borough"),

 "value", true)

order-by(

 count(rescue-data-clean, "borough"),

 "value", true)

Some of the boroughs are ALL UPPERCASE and
others are Title Case.

"Islington" and "ISLINGTON" will be treated by
Pyret as distinct values, which will throw off our
counts!

rescue-data-clean =

 transform-column(

 transform-column(

 transform-column(

 transform-column(rescue-data,

 "borough", empty-to-other),

 "ward", empty-to-other),

 "borough", string-to-upper),

 "ward", string-to-upper)

This is getting a bit deep.

fun clean-table(t :: Table) -> Table:

 doc: "Fix various columns from the animal rescue spreadsheet"

 # Change the blank strings to "Other"

 t1 =

 transform-column(

 transform-column(t,

 "borough", empty-to-other),

 "ward", empty-to-other)

 # Change strings to all uppercase

 t2 =

 transform-column(

 transform-column(t1,

 "borough", string-to-upper),

 "ward", string-to-upper)

 t2

end

rescue-data-clean = clean-table(rescue-data)

Now we’ll want to use rescue-data-clean rather
than rescue-data for the rest of our work.

We usually maintain separate names for the initially-
loaded table, the cleaned table, and for significant
variations for analysis purposes.

Data analysis

››› count(rescue-data-clean, "borough")

››› order-by(

 count(rescue-data-clean, "borough"),

 "value", true)

››› order-by(

 count(rescue-data-clean, "borough"),

 "name", false)

borough-counts =

 order-by(

 count(rescue-data-clean, "borough"),

 "value", true)

››› pie-chart(borough-counts, "value", "count")

What about getting a pie chart for the types of animals? Well, we
could do

animal-counts =

 order-by(

 count(rescue-data-clean, "animal-group"),

 "value", true)

and then

pie-chart(animal-counts, "value", "count")

What about getting a pie chart for the types of animals? Well, we
could do

animal-counts =

 order-by(

 count(rescue-data-clean, "animal-group"),

 "value", true)

and then

pie-chart(animal-counts, "value", "count")

Stop!

Rather than copy and paste long expressions, we
should define a function:

fun pie-chart-counts(t :: Table, col :: String) -> Image:

 doc: "Make a pie chart of the number of times each value occurs in the
specified table column"

 counts = order-by(count(t, col), "value", true)

 pie-chart(counts, "value", "count")

end

››› pie-chart-counts(rescue-data-clean, "animal-group")

The cliché may be true!

But we see a familiar problem – we have a count for
"Cat" and for "cat".

Back to cleaning data!

fun clean-table(t :: Table) -> Table:

 doc: "Fix various columns from the animal rescue spreadsheet"

 # Change the blank strings to "Other"

 t1 =

 transform-column(

 transform-column(t,

 "borough", empty-to-other),

 "ward", empty-to-other)

 # Change strings to all uppercase

 t2 =

 transform-column(

 transform-column(

 transform-column(t1,

 "borough", string-to-upper),

 "ward", string-to-upper),

 "animal-group", string-to-upper)

 t2

end

rescue-data-clean = clean-table(rescue-data)

Make the animal types uppercase
just like the boroughs and wards.

››› pie-chart-counts(rescue-data-clean, "animal-group")

Ok, I have to know: How many of those cats are
actually stuck up trees?

About 15% of the time, the "description" column
is "Redacted", but when it isn’t, this gives us a way
to approximate the question.

Plan

Get just the rows about cats

Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we’d better put the up-a-tree-
or-not answer into a table.

fun is-cat(r :: Row) -> Boolean:

 doc: "Return true if the row is about rescuing a
cat"

 r["animal-group"] == "CAT"

end

just-cats = filter-with(rescue-data-clean, is-cat)

Plan

Get just the rows about cats

Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we’d better put the up-a-tree-
or-not answer into a table.

fun up-tree(r :: Row) -> String:

 doc: "Return string indicating whether or not cat is up
a tree"

 desc = string-to-lower(r["description"])

 if string-contains(desc, "tree"):

 "up a tree!"

 else:

 "not up a tree"

 end

end

cats-who-may-be-up-trees =

 build-column(just-cats, "up-tree", up-tree)

fun up-tree(r :: Row) -> String:

 doc: "Return string indicating whether or not cat is up
a tree"

 desc = string-to-lower(r["description"])

 if string-contains(desc, "tree"):

 "up a tree!"

 else:

 "not up a tree"

 end

end

cats-who-may-be-up-trees =

 build-column(just-cats, "up-tree", up-tree)

This handles descriptions
with "TREE" or "Tree"

Plan

Get just the rows about cats

Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we’d better put the up-a-tree-
or-not answer into a table.

pie-chart-counts(cats-who-may-be-up-trees, "up-tree")

Plan

Get just the rows about cats

Figure out for each row if it involves a tree

Make a pie chart

Need a column to count values in, so we’d better put the up-a-tree-
or-not answer into a table.

Slander!

Changes

That’s enough pie for now.

Let’s make a bar chart to see the number of animal
rescues per year.

››› freq-bar-chart(rescue-data, "year")

››› freq-bar-chart(rescue-data, "year")

Partial year
of data!

We can split the data into pre-2020 and 2020–2022
to explore this surge.

fun plague-year(r :: Row) -> Boolean:

 doc: "Return true if the row takes place during the COVID pandemic
(rounding up to full years)"

 (r["year"] >= 2020) and (r["year"] <= 2022)

end

rescue-data-plague = filter-with(rescue-data-clean, plague-year)

fun not-plague(r :: Row) -> Boolean:

 doc: "Return true if the row is from a year entirely before or after
the COVID pandemic"

 not(plague-year(r))

end

rescue-data-not-plague = filter-with(rescue-data-clean, not-plague)

What else could we compare for these time
periods?

Class code:

https://tinyurl.com/101-2022-09-21

https://tinyurl.com/101-2022-09-21

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

