
Introduction to Lists

3 October 2022

CMPU 101 § 2 · Computer Science I

Where are we?

We’ve seen that when you want a row of a table,
you use .row-n and get a Row.

What about getting a column?

››› student-data-cleaned.get-column("house")

[list: "OTHER", "Main", "Main", "Strong", ...]

When we’ve been working with tables we’ve been
using the data type Row, but we never saw a Column
data type!

Why not? Well, a column consists of an ordered
collection of values, of unbounded length.

A column is really just a List!

Lists can be very convenient!

fun normalize-house(house :: String) -> String:

 doc: "Return one of the nine Vassar houses or 'Other'"

 if (house == "Main") or

 (house == "Strong") or

 (house == "Raymond") or

 (house == "Davison") or

 (house == "Lathrop") or

 (house == "Jewett") or

 (house == "Josselyn") or

 (house == "Cushing") or

 (house == "Noyes"):

 house

 else:

 "Other"

 end

where:

 normalize-house("Main") is "Main"

 normalize-house("Offcampus") is "Other"

end

😫

houses = [list: "Main", "Strong", "Raymond",

 "Davison", "Lathrop", "Jewett", "Josselyn",

 "Cushing", "Noyes"]

fun normalize-house(house :: String) -> String:

 doc: "Return one of the nine Vassar houses or
'Other'"

 if member(houses, house):

 house

 else:

 "Other"

 end

where:

 normalize-house("Main") is "Main"

 normalize-house("Offcampus") is "Other"

end

Mad Libs!

Thousands of Plural-Noun ago, there were calendars that
enabled the ancient Plural-Noun to divide a year into twelve
Plural-Noun, each month into Number weeks, and each
week into seven Plural-Noun. At first, people told time by a
sun clock, sometimes known as the Noun dial. Ultimately,
they invented the great timekeeping devices of today, such
as the grandfather Noun, the pocket Noun, the alarm Noun,
and, of course, the Body-Part watch. Children learn about
clocks and time almost before they learn their A-B-
Alphabet-Letter s. They are taught that a day consists of 24
Plural-Noun, an hour has 60 Plural-Noun, and a minute has
60 Plural-Noun. By the time they are in Kindergarten, they
know if the big Body-Part is at twelve and the little Body-
Part is at three, that it is Number o’clock. I wish we could
continue this Adjective lesson, but we’ve run out of Noun.

Thousands of Plural-Noun ago, there were calendars that
enabled the ancient Plural-Noun to divide a year into twelve
Plural-Noun, each month into Number weeks, and each
week into seven Plural-Noun. At first, people told time by a
sun clock, sometimes known as the Noun dial. Ultimately,
they invented the great timekeeping devices of today, such
as the grandfather Noun, the pocket Noun, the alarm Noun,
and, of course, the Body-Part watch. Children learn about
clocks and time almost before they learn their A-B-
Alphabet-Letter s. They are taught that a day consists of 24
Plural-Noun, an hour has 60 Plural-Noun, and a minute has
60 Plural-Noun. By the time they are in Kindergarten, they
know if the big Body-Part is at twelve and the little Body-
Part is at three, that it is Number o’clock. I wish we could
continue this Adjective lesson, but we’ve run out of Noun.

How can we represent a text?

template = "Thousands of Plural-Noun ago, there were calendars that enabled the
ancient Plural-Noun to divide a year into twelve Plural-Noun , each month into
Number weeks, and each week into seven Plural-Noun . At first, people told time
by a sun clock, sometimes known as the Noun dial. Ultimately, they invented the
great timekeeping devices of today, such as the grandfather Noun , the pocket
Noun , the alarm Noun , and, of course, the Body-Part watch. Children learn
about clocks and time almost before they learn their A-B- Alphabet-Letter s.
They are taught that a day consists of 24 Plural-Noun , an hour has 60 Plural-
Noun , and a minute has 60 Plural-Noun . By the time they are in Kindergarten,
they know if the big Body-Part is at twelve and the little Body-Part is at
three, that it is Number o'clock. I wish we could continue this Adjective
lesson, but we’ve run out of Noun ."

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

We need to substitute a random plural noun here!

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

string-split-all

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

Needs a helper function!

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

substitute-word
"Thousands" -> "Thousands"

"Plural-Noun" -> "gazebos"

using

I’d write the helper function first!

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 ...

where:

 substitute-word("Thousands") is "Thousands"

 substitute-word("Plural-Noun") is ...

end

Uh oh! We don’t know what

particular word it will be!

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 ...

where:

 substitute-word("Thousands") is "Thousands"

 substitute-word("Plural-Noun") is-not "Plural-Noun"

end

We know what it isn’t!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 ...

where:

 substitute-word("Thousands") is "Thousands"

 substitute-word("Plural-Noun") is-not "Plural-Noun"

 member(

 plural-nouns,

 substitute-word("Plural-Noun"))

 is true

end And we know it’s one of the right choices!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 ...

where:

 substitute-word("Thousands") is "Thousands"

 substitute-word("Plural-Noun") is-not "Plural-Noun"

 member(

 plural-nouns,

 substitute-word("Plural-Noun"))

 is true

end

The left part of an example can be any expression!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 ...

 else:

 w

 end

where:

 ...

end

We need a random element of a list.

Time to check the Pyret documentation!

https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)
https://www.pyret.org/docs/latest/numbers.html#(part._numbers_num-random)

We didn’t find a built-in way to get a random
element of a list, but we found a way to get a
random number.

How could we use this?

https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html
https://www.pyret.org/docs/latest/lists.html

With a table, we could use .row-n to get a specific
row by its index number.

With a list, we can use get(List, Number) to get
an item.

Get random number

Get list element positioned at that number

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand = num-random(3) # ugh

 get(plural-nouns, rand)

 else:

 w

 end

where:

 ...

end

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand = num-random(3)

 get(plural-nouns, rand)

 else:

 w

 end

where:

 ...

end

plural-nouns = [list: "gazebos", "avocados", "pandas",
"quokkas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand = num-random(3)

 get(plural-nouns, rand)

 else:

 w

 end

where:

 ...

end

plural-nouns = [list: "gazebos", "avocados", "pandas",
"quokkas"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand = num-random(length(plural-nouns))

 get(plural-nouns, rand)

 else:

 w

 end

where:

 ...

end

template = "Thousands of Plural-Noun ago, there were calendars that enabled the
ancient Plural-Noun to divide a year into twelve Plural-Noun , each month into
Number weeks, and each week into seven Plural-Noun . At first, people told time
by a sun clock, sometimes known as the Noun dial. Ultimately, they invented the
great timekeeping devices of today, such as the grandfather Noun, the pocket
Noun , the alarm Noun , and, of course, the Body-Part watch. Children learn
about clocks and time almost before they learn their A-B- Alphabet-Letter s.
They are taught that a day consists of 24 Plural-Noun , an hour has 60 Plural-
Noun , and a minute has 60 Plural-Noun . By the time they are in Kindergarten,
they know if the big Body-Part is at twelve and the little Body-Part is at
three, that it is Number o'clock. I wish we could continue this Adjective
lesson, but we’ve run out of Noun ."

plural-nouns =

 [list: "gazebos", "avocados", "pandas", "quokkas"]

numbers =

 [list: "-1", "42", "a billion"]

nouns =

 [list: "apple", "computer", "borscht"]

body-parts =

 [list: "elbow", "head", "spleen"]

alphabet-letters =

 [list: "A", "C", "Z"]

adjectives =

 [list: "funky", "boring"]

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand = num-random(length(plural-nouns))

 get(plural-nouns, rand)

 else if w == "Number":

 rand = ...

 else:

 w

 end

where:

 ...

end

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand = num-random(length(plural-nouns))

 get(plural-nouns, rand)

 else if w == "Number":

 rand = ...

 else:

 w

 end

where:

 ...

end

Don’t repeat yourself!

fun rand-word(l :: List<String>) -> String:

 doc: "Return a random word in the given list"

 rand = num-random(length(l))

 get(l, rand)

where:

 member(plural-nouns, rand-word(plural-nouns))

 is true

end

This wasn't on our task plan, but we saw a need
for a general utility function, so we wrote it!

fun substitute-word(w :: String) -> String:

 doc: "Substitute a random word if w is a category"

 if w == "Plural-Noun":

 rand-word(plural-nouns)

 else if w == "Number":

 rand-word(numbers)

 else if w == "Noun":

 rand-word(nouns)

 else if w == "Body-Part":

 rand-word(body-parts)

 else if w == "Alphabet-Letter":

 rand-word(alphabet-letters)

 else if w == "Adjective":

 rand-word(adjectives)

 else:

 w

 end

end

Go back to the task plan.

We’ve completed our helper, and now we need to
run it on every word in the list, like transform-
column runs a function on every row of a table.

The way to do that is called map.

fun mad-libs(t :: List<String>) -> String:

 doc: "Randomly fill in the blanks in the mad libs
template"

 map(substitute-word, t)

end

This gives us a list of strings. How can we join it back into a single string?

fun mad-libs(t :: List<String>) -> String:

 doc: "Randomly fill in the blanks in the mad libs
template"

 with-subs = map(substitute-word, t)

 join-str(with-subs, " ")

end

fun mad-libs(t :: List<String>) -> String:

 doc: "Randomly fill in the blanks in the mad libs
template"

 with-subs = map(substitute-word, t)

 join-str(with-subs, " ")

where:

 ...

end

Preview: Lists and recursion

What if join-str didn’t already exist for our
convenience?

To write a function that processes a list element by
element, we need to understand the real nature of
lists.

A list consists of two parts: a first element and
the rest of the list.

››› l = [list: 1, 2, 3]

››› l.first

1

››› l.rest

[list: 2, 3]

The first element is linked to the rest and so on until
we reach the empty list:

››› link(1, empty)

[list: 1]

››› link(1, link(2, link(3, empty)))

[list: 1, 2, 3]

When we write a function that recursively processes
a list, we deal with these two cases – linking an
element of being empty:

fun add-nums(l :: List<Number>) -> Number:

 cases (List) l:

 | empty => 0

 | link(f, r) => f + add-nums(r)

 end

end

In the case of joining strings, we need to know not
just if the current list is empty but is the rest of the
rest empty. This is how we know whether to add a
space or not.

fun join-with-spaces(l :: List<String>) -> String:

 doc: "Join the strings in l with a space between
each one"

 cases (List) l:

 | empty => ""

 | link(f, r) =>

 cases (List) r:

 | empty => f

 | link(fr, rr) =>

 f + " " + join-with-spaces(r)

 end

 end

where:

 join-with-spaces([list:]) is ""

 join-with-spaces([list: "y"]) is "y" + ""

 join-with-spaces([list: "x", "y"]) is

 "x" + " " + join-with-spaces([list: "y"])

end

Class code:

https://code.pyret.org/editor#share=1gNCCr9cAxOFqewY3Wx221gSqV-JQho5n&v=31c9aaf

https://code.pyret.org/editor#share=1gNCCr9cAxOFqewY3Wx221gSqV-JQho5n&v=31c9aaf

