
Lists and Recursion

5 October 2022

cmpu 101 § 3 · Computer Science I

Dr. Marie desJardins

Dr. Marie desJardins on Fairness and
Equity in Data Science: Challenges
and Possibilities

Friday, Oct 7, 4:00 p.m.
Location:
New England 206

Dr. desJardins will talk about the current state of data science, machine learning, and AI;
the future of these technologies; the importance of diversity for creating robust, effective
engineering solutions; and how we can thoughtfully ensure that data science and
computing will positively affect our lives and the lives of generations to come. Jointly
sponsored by the Computer Science Department and Data Science & Society.

Reception to follow in Sanders Physics 105 from 5:00-6:00 p.m.

Bio:

Dr. Marie desJardins is currently a consultant who offers her expertise in artificial
intelligence, machine learning, and computer science education to higher education,
industry, nonprofits, and government agencies. She previously served as the inaugural
Dean of the College of Organizational, Computational, and Information Sciences at
Simmons University; Professor of Computer Science and Associate Dean for Academic
Affairs at the University of Maryland, Baltimore County; and Senior Computer Scientist
at SRI International in Menlo Park, California. A career researcher and educator,
Dr.desJardins has published over 140 scientific papers in journals, conferences, and
workshops and secured nearly $12 million in external research funding.

Dr. desJardins graduated magna cum laude from Harvard University with a Bachelor of
Arts in engineering and computer science, and earned her PhD in computer science from
the University of California, Berkeley.

Where are we?

We’ve been working with tables for the past few
weeks.

Last class we saw a new data type: lists.

[list:

 "A",

 "A",

 "C",

 "B"]

››› grades

[list:

 "A",

 "A",

 "C",

 "B"]

››› grades ››› grades.get-column("letter-grade")

Columns in a table can contain a mix of different
data types, e.g.,

table: grades
 row: 98
 row: 56
 row: 74
 row: "F"
 row: "A"
 row: "B"
end

And so can a list:
[list: 98, 56, 74, "F", "A", "B"]

However, we usually find it easier to work with a
column where every value is of the same kind.

We can annotate the type of data in the column
when we make a table:

table: col :: Number
 row: 1
 row: 2
 row: 3
end

table: col :: String
 row: "a"
 row: "b"
 row: "c"
end

Likewise, we’ll most often have just one type of data
in a list, and we can show that when we write the
type annotation for a function:

For example,
[list: 1, 2, 3] List<Number>
 “a list of numbers”

[list: "a", "b", "c"] List<String>
 “a list of strings”

Much like the rows in a table, the items in a list have
numeric indices:

››› lst = [list: "a", "b", "c"]

And we can access items using these indices:
››› L.get(lst, 0)
"a"
››› L.get(lst, 1)
"b"

0 1 2

››› lst = [list: "a", "b", "c"]

The length of a list is always one more than the last
item index:

››› length(lst)
3

0 1 2

››› lst = [list: "a", "b", "c"]

To check if an item is in a list, we can just ask if the
list has it as a member:

››› lst.member("c")
true

0 1 2

We used higher-order functions to work with tables,
and we can do the same with lists:

Tables Lists

transform-column map

We used higher-order functions to work with tables,
and we can do the same with lists:

Tables Lists

transform-column map

filter-with filter

››› lst = [list: "a", "b", "c"]
››› filter(
 lam(i): not(i == "a") end,
 lst)
[list: "b", "c"]

››› lst = [list: "a", "b", "c"]
››› filter(
 lam(i): not(i == "a") end,
 lst)
[list: "b", "c"]

This is an anonymous
(i.e., unnamed)
function made using a
lambda expression.

One difference to be aware of:
filter-with(⟨table⟩, ⟨function⟩)

filter(⟨function⟩, ⟨list⟩)

When you’re working with
a list, the function
argument comes first.

At the end of last class, we considered what we
could do if there wasn’t a built-in function, so we
needed to write a function that looked at each item
in a list.

Designing list functions

How would we write a function that takes a list of
numbers and returns its sum?

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is ...
end

We can have a string with no characters in it:
""

And, likewise, we can have a list with no items in it:
[list:]

For these data types, these values are the equivalent
of 0, the number representing no quantity.

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4
 my-sum([list: 1, 4]) is 1 + 4
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4
 my-sum([list: 1, 4]) is 1 + 4
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4
 my-sum([list: 1, 4]) is 1 + 4
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + 0
 my-sum([list: 1, 4]) is 1 + 4 + 0
 my-sum([list: 3, 1, 4]) is 3 + 1 + 4 + 0
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 ...
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

The secret nature of lists

Writing our input as [list: 3, 1, 4] is a lie.

It’s just a shorthand for the real structure of a list.

In its secret heart, Pyret knows there are only two
ways of making a list.

A list is either:

empty

link(⟨item⟩, ⟨list⟩)

A list of one item, e.g.,

[list: "A"],

is really a link between an item and the empty list:

link("A", empty)

[list:

 "A",

 "A",

 "C",

 "B"]

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

Is link(3, 4) a valid list?

Is link(3, 4) a valid list?

Designing functions using
the definition of a list

To write our own functions to process a list, item by
item, we need to use the true form of a list and
think recursively.

Recursion is a technique that involves defining a
solution or structure using itself as part of the
definition.

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

cases is like a special if
statement that we use to ask
“which shape of data do I
have?”

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

 If the list is empty, do one thing.

 If it’s a link, do another thing.

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

Denotes the output
of a function

Marks the
expression to
evaluate if the data
has the shape on
the left.

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

And this is giving names for referring to the arguments to link.

This gives names for referring to the arguments to my-sum.

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 0

 | link(f, r) =>
 ...

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 0

 | link(f, r) =>
 f + my-sum(r)

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"

 cases (List) lst:
 | empty =>
 0

 | link(f, r) =>
 f + my-sum(r)

 end

where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

fun my-sum(lst :: List<Number>) -> Number:
 doc: "Return the sum of the numbers in the list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

When we call this function, it evaluates as:
 my-sum(link(3, link(1, link(4, empty))))
→ 3 + my-sum(link(1, link(4, empty)))
→ 3 + 1 + my-sum(link(4, empty))
→ 3 + 1 + 4 + my-sum(empty)
→ 3 + 1 + 4 + 0

Thinking recursively

Any time a problem is structured such that the
solution on larger inputs can be built from the
solution on smaller inputs, recursion is appropriate.

All recursive functions have these two parts:
Base case(s):

What’s the simplest case to solve?

Recursive case(s):

What’s the relationship between the current case and the answer to
a slightly smaller case?

You should be calling the function you’re defining here; this is
referred to as a recursive call.

fun recursive-function(lst :: List) -> ...:
 cases (List) lst:
 | empty =>
 ...

 | link(f, r) =>
 ... recursive-function(r) ...

 end
end

Base case

Recursive case

Each time you make a recursive call, you must make
the input smaller somehow.

If your input is a list, you pass the rest of the list to the recursive call.

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

First

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

Rest

First

››› lst = [list: "item 1", "and", "so", "on"]
››› lst.first
"item 1"
››› lst.rest
[list: "and", "so", "on"]

cases (List) lst:
 | empty => ...
 | link(f, r) => ...
end

First Rest

What happens if we don’t make the input smaller?

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(r)
 end
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

Recursive call on the rest of the input list

fun my-sum(lst :: List<Number>) -> Number:
 cases (List) lst:
 | empty => 0
 | link(f, r) => f + my-sum(lst)
 end
where:
 my-sum([list:]) is 0
 my-sum([list: 4]) is 4 + my-sum([list:])
 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
end

Recursive call on the original input list

When we call this function, it evaluates as:
 my-sum(link(3, link(1, link(4, empty))))
→ 3 + my-sum(link(3, link(1, link(4, empty))))
→ 3 + 3 + my-sum(link(3, link(1, link(4, empty))))
→ 3 + 3 + 3 + my-sum(link(3, link(1, link(4, empty))))
...

This isn’t going to end well.

When a recursive function never stops calling itself,
it’s called infinite recursion.

Practice designing recursive functions

The function any-below-10 should return true if
any member of the list is less than 10 and false
otherwise.

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less than 10"

 ...

where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is ...
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less than 10"

 ...

where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is ...
end

What goes here?

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less than 10"

 ...

where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is false
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less than 10"

 ...

where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
 any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
 any-below-10([list: 4]) is (4 < 10)
 any-below-10([list:]) is false
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less than 10"

 ...

where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
 any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
 any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
 any-below-10([list:]) is false
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less than 10"
 cases (List) lst:
 | empty => false
 | link(f, r) => (f < 10) or any-below-10(r)
 end
where:
 any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
 any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
 any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
 any-below-10([list:]) is false
end

Now that we’ve seen how to write any-below-10,
we can use the same pattern to implement a higher-
order function where we can ask if any item in a list
satisfies some predicate.

fun my-any(fn :: Function, lst :: List) -> Boolean:
 doc: "Return true if the function fn is true for any
item in the given list."
 cases (List) lst:
 | empty => false
 | link(f, r) => fn(f) or my-any(fn, r)
 end
end

fun my-any(fn :: Function, lst :: List) -> Boolean:
 doc: "Return true if the function fn is true for any
item in the given list."
 cases (List) lst:
 | empty => false
 | link(f, r) => fn(f) or my-any(fn, r)
 end
end

fun my-all(fn :: Function, lst :: List) -> Boolean:
 doc: "Return true if the function fn is true for
every item in the given list."
 cases (List) lst:
 | empty => true
 | link(f, r) => fn(f) and my-all(fn, rst)
 end
end

fun any-below-10(lst :: List<Number>) -> Boolean:
 doc: "Return true if any number in the list is less
than 10"
 any(lam(x): x < 10 end, lst)
where:
 any-below-10([list: 3, 1, 4]) is true
 any-below-10([list: 11, 14]) is false
 any-below-10([list:]) is false
end

This is how you should write this function – use
built-in higher-order functions like any when you
can!

Wrap-up practice

fun list-len(lst :: List) -> Number:
 doc: "Compute the length of a list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => 1 + list-len(____)
 end
end

fun list-len(lst :: List) -> Number:
 doc: "Compute the length of a list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => 1 + list-len(r)
 end
end

fun list-product(lst :: List<Number>) -> Number:
 doc: "Compute the product of all the numbers in lst"
 cases (List) lst:
 | empty => 1
 | link(f, r) => ____ * list-product(r)
 end
end

fun list-product(lst :: List<Number>) -> Number:
 doc: "Compute the product of all the numbers in lst"
 cases (List) lst:
 | empty => 1
 | link(f, r) => f * list-product(r)
 end
end

fun is-member(item, lst :: List) -> Boolean:
 doc: "Return true if item is a member of lst"
 cases (List) lst:
 | empty => ______
 | link(f, r) =>
 (f == ______) or (is-member(______, ______)
 end
end

fun is-member(item, lst :: List) -> Boolean:
 doc: "Return true if item is a member of lst"
 cases (List) lst:
 | empty => false
 | link(f, r) =>
 (f == item) or (is-member(item, r)
 end
end

Final note

Lists, recursion, and cases syntax are not easy
concepts to grasp separately, much less all together
in a short time.

Don’t feel frustrated if it takes a little while for these
to make sense. Give yourself time, be sure to
practice working in Pyret, and ask questions.

Class code:
https://tinyurl.com/101-2022-10-05

https://tinyurl.com/101-2022-10-05

Acknowledgments

This lecture incorporates material from:
Kathi Fisler, Brown University

Doug Woos, Brown University

