
Designing Data Types

24 October 2022

CMPU 101 § 2 · Computer Science I

Where are we?

We’ve seen numbers, strings, images, Booleans,
tables, and lists.

These let us represent many kinds of real data quite
naturally. But there are times when we’ll want
something a bit different.

Defining structured data

Imagine that we’re doing a study on communication
patterns among students.

While we don’t have the messages the students
sent, we have the metadata for each message:

sender

recipient

day of the week

time (hour and minute)

This kind of metadata is quite important!

You may want to read

John Bohannon, “Your call and text records are
far more revealing than you think”, Science, 2016

https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think
https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think
https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think

Imagine that we’re doing a study on communication
patterns between students.

While we don’t have the messages the students
sent, we have the metadata for each message:

sender

recipient

day of the week

time (hour and minute)

How should we store this data?

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: ...

"4015551234" "8025551234" "Mon" …

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: String

"4015551234" "8025551234" "Mon" "4:55"

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: Number

"4015551234" "8025551234" "Mon" 295

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: List

"4015551234" "8025551234" "Mon" [list: 4, 55]

We could have a table, e.g.,

sender :: String recipient :: String day :: String hour :: Number minute :: Number

"4015551234" "8025551234" "Mon" 4 55

If we use multiple columns, we can access the
components independently, by name, but if we use a
single column, all of the “time” data is in one place.

To resolve this trade-off, we add structure: We can
have a single data type that has named parts.

data Time:

 | time(hours :: Number, mins :: Number)

end

data Time:

 | time(hours :: Number, mins :: Number)

end

The name of the data type

data Time:

 | time(hours :: Number, mins :: Number)

end

A constructor function that builds the data type

data Time:

 | time(hours :: Number, mins :: Number)

end

The components of the data

After defining the data type,

data Time:

 | time(hours :: Number, mins :: Number)

end

we can call time to build Time values,

››› noon = time(12, 0)

››› half-past-three = time(3, 30)

and we can use dot notation to access the components:

››› noon.hours

12

››› half-past.mins

30

Our table could now be:

sender :: String recipient :: String day :: String time :: Time

"4015551234" "8025551234" "Mon" time(4, 55)

And we can write functions that use the hour and
minute components, e.g.,

message-before takes a row (representing a
message) and a Time value and returns true if the
message was sent before the specified time.

Defining conditional data

There are many applications where we need to
represent times, and we can reuse our Time data
definition.

For example, if we want to build a calendar, that’s a
collection of appointments, each of which has a

Date

Start time

Duration

Description

One possible design:

data Date:

 | date(year :: Number, month :: Number,

 day :: Number)

end

data Event:

 | event(date :: Date, time :: Time,

 duration :: Number, descr :: String)

end

calendar :: List<Event> = ...

Many calendar programs also offer a way to manage
your to-do list.

Let’s say a to-do item has the following data:

Task

Deadline

Urgency

We could have one list for calendar events and one
for to-do items, but then we lose the benefit of
having a single calendar with all our entries.

For many tasks (e.g., displaying entries sorted by
date), we want both calendar events and to-do
items.

Instead, we can define a conditional data type with
multiple constructors:

data Event:

 | appt(date :: Date, time :: Time,

 duration :: Number, descr :: String)

 | todo(deadline :: Date, task :: String,

 urgency :: String)

end

Now a calendar can be a List<Event>, containing
both types of events, e.g.,

calendar :: List<Event> =

 [list:

 appt(date(2022, 10, 23), time(13, 30),

 75, "CMPU 101"),

 todo(date(2022, 10, 24),

 "Use avocado", "high")]

But how do we work with a list where the items can
have different parts?

Well, we’ve already seen the way to work with
different varieties of data; it’s cases!

For example, if we want to search our calendar for
all events related to a term, we could write a
function event-matches.

And we can use it to filter our calendar:

fun search-calendar(cal :: List<Event>,

 term :: String) -> List<Event>:

 doc: "Return just the calendar events that
contain the term"

 filter(

 lam(e): event-matches(e, term) end,

 cal)

end

Defining recursive data

A list is just a built-in kind of conditional data!

We used cases to tell apart its two possibilities –
empty or link.

Now we can see how lists are defined:

data MyList:

 | my-empty

 | my-link(first :: Any, rest :: MyList)

end

Now we can see how lists are defined:

data MyList:

 | my-empty

 | my-link(first :: Any, rest :: MyList)

end

my-empty

my-link(1,

 my-link(2,

 my-link(3,

 my-empty)))

And just like we did for a List, we use this template
to write a function that recursively processes the
data:

fun my-list-fun(ml :: MyList) -> ...:

 doc: "Template for a fn that takes a MyList"

 cases (MyList) ml:

 | my-empty => ...

 | my-link(f, r) =>

 ... f ...

 ... my-list-fun(r) …

 end

where:

 my-list-fun(...) is ...

end

Every data definition has a corresponding template.

The more complex the data definition is – lots of
variants, recursion, etc. – the more helpful it is to
use the template!

Given a (recursive) data definition, you write a
template by:

1 Creating a function header

2 Using cases to break the data input into its variants

3 In each case, listing each of the fields in the answer

4 Calling the function itself on any recursive fields

There’s no need to define MyList when we already
have List, but next class we’ll see how the same
idea of defining a recursive data type lets us create
something new!

Class code:

https://tinyurl.com/101-2022-10-23

https://tinyurl.com/101-2022-10-23

Acknowledgments

This lecture incorporates material from:

Kathi Fisler, Brown University

Doug Woos, Brown University

