
Trees

26 October 2022

CMPU 101 § 2 · Computer Science I

Where are we?

Now we can see how lists are defined:

data MyList:

 | my-empty

 | my-link(first, rest :: MyList)

end

Self-reference

And just like we did for a List, we use this template
to write a function that recursively processes the
data:

fun my-list-fun(ml :: MyList) -> ...:

 doc: "Template for a fn that takes a MyList"

 cases (MyList) ml:

 | my-empty => ...

 | my-link(f, r) =>

 ... f ...

 ... my-list-fun(r) …

 end

where:

 my-list-fun(...) is ...

end

Every data definition has a corresponding template.

The more complex the data definition is – lots of
variants, recursion, etc. – the more helpful it is to
use the template!

Rumor mills

Ginny controls the rumor mill

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Cho

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Romilda

Vincent

Cho

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Romilda

Vincent

Ginny

Cho

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Cho

Romilda

Vincent

Ginny

Simplifying assumption:
Each person tells at
most two others

Tracking rumors

Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Romilda

Vincent

Ginny

Simplifying assumption:
Each person tells at
most two othersCho

If you ignore my silly Harry Potter example, this is a
pretty serious problem.

A lot of research right now is focused on building
models of how information – and misinformation! –
spreads through social networks, both in person and
online.

Representing rumor mills

Is a rumor mill simply a list of people?

Representing rumor mills

Is a rumor mill simply a list of people?

No, because there are relationships
among the people.

Representing rumor mills

We could represent these relations with a table, e.g.,
name :: String next1 :: String next2 :: String

"Pansy" "Cho" "Draco"

"Cho"

… … …

Representing rumor mills

Using a table doesn’t give us any straightforward
way to process the rumor mill.

Could we use something like a list but representing
the relations?

Representing rumor mills

data Person:

 | person(name :: String, next1 :: Person, next2 :: Person)

end

How about this?

data Person:

 | person(name :: String, next1 :: Person, next2 :: Person)

end

Representing rumor mills

Some people don’t gossip to anyone else – the red arrows above.

data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Representing rumor mills

How about this?

Example rumor mills

no-one

data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Example rumor mills

gossip("Ginny", no-one, no-one)

Ginny

data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Example rumor mills

gossip("Romilda", 
 no-one, 
 gossip("Ginny", no-one, no-one))

Ginny

Romilda

gossip("Pansy", 

 gossip("Cho", no-one, no-one) 

 gossip("Draco", 

 gossip("Romilda",  

 no-one 

 gossip("Ginny", no-one, no-one)) 

 gossip("Vincent", no-one, no-one)))

Example using names for parts:

GINNY-MILL =

 gossip("Ginny", no-one, no-one)

ROMILDA-MILL =

 gossip("Romilda", no-one, GINNY-MILL)

VINCENT-MILL =

 gossip("Vincent", no-one, no-one)

DRACO-MILL =

 gossip("Draco", ROMILDA-MILL, VINCENT-MILL)

CHO-MILL =

 gossip("Cho", no-one, no-one)

PANSY-MILL =

 gossip("Pansy", CHO-MILL, DRACO-MILL)

A RumorMill is a type of structure called a tree.

Each element in the tree is called a node.

The first node in the tree is called the root.

A node with no children is called a leaf.

Like a list, a tree is recursive: Every subtree is a tree.

Programming with rumors
data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Programming with rumors
data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Self-reference × 2

For each element, there’s not just one “next” element; there are two!

Programming with rumors
data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

#|

fun rumor-mill-template(rm :: RumorMill) -> ...:

 doc: "Template for a function with a RumorMill as input"

 cases (RumorMill) rm:

 | no-one => ...

 | gossip(name, n1, n2) =>

 ... name

 ... rumor-mill-template(n1)

 ... rumor-mill-template(n2)

 end

end

|#

Self-reference × 2

Programming with rumors
data RumorMill:

 | no-one

 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

#|

fun rumor-mill-template(rm :: RumorMill) -> ...:

 doc: "Template for a function with a RumorMill as input"

 cases (RumorMill) rm:

 | no-one => ...

 | gossip(name, n1, n2) =>

 ... name

 ... rumor-mill-template(n1)

 ... rumor-mill-template(n2)

 end

end

|#

Self-reference × 2

Natural recursion × 2

Starter file:

https://code.pyret.org/editor#share=1H8ORHPhzm15GW__9yAP-
DVJiRE_7wHas&v=22f3b65

https://code.pyret.org/editor#share=1H8ORHPhzm15GW__9yAP-DVJiRE_7wHas&v=22f3b65
https://code.pyret.org/editor#share=1H8ORHPhzm15GW__9yAP-DVJiRE_7wHas&v=22f3b65

Rumor program examples

Design the function is-informed that takes a
person’s name and a rumor mill and determines
whether the person is part of the rumor mill.

Rumor program examples

Design the function rumor-delay that takes a
rumor mill and determines the maximum number of
days required for a rumor to reach everyone,
assuming that each person waits a day before
passing on a rumor.

Solutions:

https://code.pyret.org/
editor#share=1hFXf0kyaVx9akJlL3Gr19bWKFhCe9rRQ&v=22f3b65

https://code.pyret.org/editor#share=1hFXf0kyaVx9akJlL3Gr19bWKFhCe9rRQ&v=22f3b65
https://code.pyret.org/editor#share=1hFXf0kyaVx9akJlL3Gr19bWKFhCe9rRQ&v=22f3b65

A more realistic rumor mill

In our rumor mill, we restricted each person to
spread gossip to at most two other people.

This isn’t very realistic; some gossips talk to lots of
people!

Let each gossip talk to any number of people:

Pansy

Draco

Cho

Romilda

Vincent

Ginny

How do we represent an arbitrary number of gossip
connections?

How do we represent an arbitrary number of gossip
connections?

data Gossip:

 | gossip(name :: String, next :: List<Gossip>)

end

data Gossip:

 | gossip(name :: String, next :: List<Gossip>)

end

#|

fun gossip-template(g :: Gossip) -> ...:

 ... gossip.name

 ... log-template(g.next)

end

fun log-template(l :: List<Gossip>) -> ...:

 cases (List) l:

 | empty => ...

 | link(f, r) =>

 ... gossip-template(f)

 ... log-template(r)

 end

end

|#

Starter file:

https://code.pyret.org/
editor#share=1gwQ4AVUMHm4vg5JJ_1aIQrpkx0kytxdi&v=22f3b65

https://code.pyret.org/editor#share=1gwQ4AVUMHm4vg5JJ_1aIQrpkx0kytxdi&v=22f3b65
https://code.pyret.org/editor#share=1gwQ4AVUMHm4vg5JJ_1aIQrpkx0kytxdi&v=22f3b65

Design count-gossips which takes a gossip and
returns the number of people informed by the
gossip (including the starting person).

Solutions:

https://code.pyret.org/
editor#share=1wfB4lTc5b7dMUV4f1QxzwMaMU9-fMn9L&v=22f3b65

https://code.pyret.org/editor#share=1wfB4lTc5b7dMUV4f1QxzwMaMU9-fMn9L&v=22f3b65
https://code.pyret.org/editor#share=1wfB4lTc5b7dMUV4f1QxzwMaMU9-fMn9L&v=22f3b65

Acknowledgments

This lecture incorporates material from:

J. K. Rowling, Harry Potter and the Half-Blood Prince

Marc Smith, Vassar College

Jonathan Gordon, Vassar College

