
CMPU101 ⋅ Fall 2022
Exam 1: Solutions

Problem 1

15 pointsFor each of the following Pyret expressions, write what it will
evaluate to or, if it will produce an error, write Error. Remember to
include quotation marks for strings.

a. 1 pt"Good luck!" → "Good luck!"

b. 2 pts(20 + 2) * -1 → -22

c. 2 pts"2" == 2 → false

d. 2 pts"Grace" + " " + "Hopper" → "Grace Hopper"

e. 2 ptsgreeting = "Ahoy, world!"
string-substring(greeting, 0, 1) → "A"

f. 2 ptsx = 2
y = x + 2
y * 2 → 8

g. 2 ptsgrade = 100

if grade > 90:
":-)"

else if grade > 75:
":-/"

else:
":-("

end

→ ":-)"

h. 2 pts(6 > 0) and (6 > 10) or (6 < 8) → Error (missing parentheses)



2

Problem 2

10 pointsThe function design below has two problems: It has a bug and is
missing an example that would have revealed it. Read the code
carefully and fix both problems.

fun string-longer(str1 :: String, str2 :: String) -> String:
doc: "Produce the longer of two strings; first string if lengths are equal."

if string-length(str1) > string-length(str2):
str1

else:
str2

end

where:
string-longer("ab", "xyz") is "xyz"
string-longer("abc", "zy") is "abc"

end

Change > to >=

Add test case:

string-longer("abc", "xyz") is "abc"

You don’t need to copy the provided code; you can just show the
correction and additional example.



3

Problem 3

10 pointsConsider the following function to return the state of water given a
temperature:

fun water-state(temp :: Number) -> String:
doc: "Return a string describing the state of water given its

temperature in degrees Celsius"

if temp <= 0:
"solid"

else if temp < 100:
"liquid"

else:
"gas"

end

where:

water-state(-2) is "solid"
water-state(50) is "liquid"
water-state(1000) is "gas"

end

Fill in the where: block with enough examples to fully test this
function.



4

Problem 4

10 pointsWrite a function that takes a Number representing a year from
1861 to 1900 and returns a String giving the last name of the
person serving as president of Vassar College that year.

Name Dates

Milo P. Jewett 1861–1864

John H. Raymond 1864–1878

Samuel L. Caldwell 1878–1885

James Monroe Taylor 1886–1914

This problem should
be solved without using
Pyret tables.

For a year when two people served as president, return the new
(that is, later) president’s name. See the examples provided in the
where: block below.

fun president-name(year :: Number) -> String:

doc: "Return the name of the president of Vassar College for a given year"
if year >= 1886:
"Taylor"

else if year >= 1878:
"Caldwell"

else if year >= 1864:
"Raymond"

else if year >= 1861:
"Jewett"

else:
raise("Vassar pre-history")

end

where:
president-name(1886) is "Taylor"
president-name(1885) is "Caldwell"
president-name(1870) is "Raymond"
president-name(1861) is "Jewett"

end



5

Problem 5

10 pointsThe HAL Corporation has a strange password checker in order to
enter corporate headquarters. Rather than a string of characters, a
user must enter two numbers in the function passwd. It will return
the string "you may enter" or "not the password" as follows:

fun passwd(a :: Number, b :: Number) -> String:
doc: "Check numeric password parts a and b"
if a < b:
"not the password"

else if (a - b) <= 5:
"not the password"

else if (a - b) > 10:
"not the password"

else:
"you may enter"

end
where:

passwd(4, 7) is "not the password"
passwd(10, 3) is "you may enter"

passwd(4, 3) is "not the password"
passwd(50, 0) is "not the password"

end

a. While the function includes two test cases in the where block,
there’s one more possibility that should be added. Write the
missing test case above.

b. Dave, the lead programmer, believes there is a way to change the
passwd function so it doesn’t require three separate branches of
the if–else if statement that all return the same result ("not the
password"). Rewrite the if statement with only two branches (if
and else) so that the same tests pass.

This is the
straightforward
solution, but you can
simplify more if you
remove the a < b
check, since whenever
a < b, it’s also the case
that (a - b) <= 5.

if (a < b) or ((a - b) <= 5) or ((a - b) > 10):
"not the password"

else:
"you may enter"

end



6

Problem 6

20 pointsConsider the following apples table and is-expensive predicate
function over individual rows of the apples table:

apples =
table: variety, price, is-ripe, availability

row: "Gala", 1.99, true, "high"
row: "Honeycrisp", 3.99, true, "high"
row: "Macintosh", 1.99, true, "medium"
row: "Autumn Glory", 3.59, false, "low"

end

fun is-expensive(r :: Row) -> Boolean:
doc: "Return true if the apple is expensive"
r["price"] > 2.50

where:
is-expensive(apples.row-n(0)) is false
is-expensive(apples.row-n(1)) is true

end

a. Fill in the expected return values in the where block for
is-expensive.

b. Fill in the missing docstring above for is-expensive.

c. Write an expression to show the price of Macintosh apples found
in the apples table. Do not use filter-with; just access the value
directly.

apples.row-n(2)["price"]

d. Write an expression to show the value in the variety column for
the most expensive apple in the apples table. Your expression
should work even if we update the apples table to have additional
rows.

order-by(apples, "price", false).row-n(0)["variety"]



7

e. Show the expensive-apples table that results from running this: You don’t need to write
this as Pyret code; you
can draw the table.expensive-apples = filter-with(apples, is-expensive)

variety price is-price availability

"Honeycrisp" 3.99 true "high"
"Autumn Glory" 3.59 false "low"

f. Write a predicate function that takes a Row as input and
determines whether the kind of apple in that Row is both ripe and
has high availability.

We’ve helped you get started with the first line of the function. Be
sure to include a docstring and a where: block with enough
examples to fully test the function.

fun high-ripe(r :: Row) -> Boolean:

doc: "Determines whether the kind of apple in that row is both ripe and has
high availability"
r["is-ripe"] and (r["availability"] == "high")

where:
high-ripe(apples.row-n(0)) is true
high-ripe(apples.row-n(2)) is false
high-ripe(apples.row-n(3)) is false

end


