Functions... kinda like £(x)

CMPU 101 — Problem Solving and Abstraction

Peter Lemieszewski

A quick review of last week’s concepts @

* We’'ve been using Pyret to write expressions that use:
1. Data, including numbers (0, -10, 0.4),
2. strings ("", "hi", "111"),
3. images (circle(2, "solid", "red")).
* Which we modify or combine using operators or functions
1. +

2.string—-append
3.overlay

8/30/2022 CMPU 101: Problem Solving and Abstraction 2

A quick review of last week’s concepts @

* We’'ve been using Pyret to write expressions that use:
1. Data, including numbers (0, -10, 0.4),
2. strings ("", "hi", "111"),
3. images (circle(2, "solid", "red")).
* Which we modify or combine using operators or functions
1. + Operator

2 .string-append Ffunction
3. overlay Function

9/5/2022 CMPU 101: Problem Solving and Abstraction 3

Errrors @

 |IRL Software Problems are expensive when found by customers
* In terms of cost of lost revenue, fixing the problem, brand satisfaction

 Typically called “run time errors”
 Less expensive if found before released to customers

* The cost of a problem is lower... the earlier a problem is discovered

* Lowest cost: finding a problem immediately after we write it!
« This is what pyret does as you type code

-+ This is also what happens when you click on [INSSSGF IS B

 In Agile programming terms: Fail Fast

8/30/2022 CMPU 101: Problem Solving and Abstraction 4

Fail Fast

* ...google search:

8/30/2022

https://www.agile-academy.com » ... » Fail Fast

Fail Fast | Agile Dictionary

@ About featured snippets + @ Feedback

People also ask

Why is agile fail fast?

What is fail fast in programming? A

Essentially, fail fast (a.k.a. fail early) is to code your software such that, when there is a
problem, the'software fails as soon as and as visibly as possible, rather than trying
to proceed in a possibly unstable state.

https://stackoverflow.com > questions » what-does-the-ex...

What does the expression "Fail Early" mean, and when would you
want to ...

Search for: What is fail fast in programming?

CMPU 101: Problem Solving and Abstraction

What else did we observe last week? @

* We can create (more) sophisticated code by combining functions
and operators

e ...essentially creating expressions
*1+(7/8)
* string-append(“Computer”, “Science”)

* We can name our expressions too
e ...more precisely, the results of our expressions

”

* my-major = string-append(“Computer”, “Science”)

8/30/2022 CMPU 101: Problem Solving and Abstraction 6

Today’s Topic: Functions @

°In mathematics:
f(x) =P+ 2x 41
°In Pyret Programming:

*We need a way to tell Pyret we have a function:

fun
f(x): = (x * x * x) + (2 * x) + 1
end

8/30/2022 CMPU 101: Problem Solving and Abstraction 7

Pyret Function Syntax @

Function definitions in Pyret have this form:

(function-name) ({arg-name), ...):
(expression)

* Angle brackets < > refer to something that is optional
* Technically, the ellipse should have angle brackets too!

* Another name for arg-name is parameter

9/5/2022 CMPU 101: Problem Solving and Abstraction 8

SSE: Super Simple Example

Mary Berry needs to know
how many cakes to bake for
her cake shop.

To avoid running out or having too
many, she likes to bake two cakes
more than the number she sold the
previous day.

E.g., if Mary sells eight cakes on
Monday, she makes ten cakes on
Tuesday.

Let’s write some code to help Mary.

8/30/2022 CMPU 101: Problem Solving and Abstraction

SSE: Pyret function elements 1/5

9/5/2022

special word to define a
function

/////"

cakes—to-make(num-sold):

num-sold + 2

CMPU 101: Problem Solving and Abstraction

10

SSE: Pyret function elements 2/5

9/5/2022

name of the
function

[

cakes—-to-make|[(num-sold):
num—-sold + 2

CMPU 101: Problem Solving and Abstraction

11

SSE: Pyret function elements 3/5

9/5/2022

paramete
r

N

cakes—to-make (lnum-sold| :

num-sold + 2

CMPU 101: Problem Solving and Abstraction

12

SSE: Pyret function elements 4/5

9/5/2022

cakes=to-make(num-sold):

num—-sold + 2

\

Transmogrify data

See Calvin & Hobbes for transmogrify comic

13

SSE: Pyret function elements 5/5

9/5/2022

cakes—-to—make
num-sold + 2

N\

(num-sold):

special word to signal
the function definition
is done

CMPU 101: Problem Solving and Abstraction

14

Functional Abstraction 1/3

Draw a traffic light

above(|circle(40, "solid",||["red"),
above(circle(40, "solid", ||"yellow")
circle(40, "solid",||"green"))

Unchanging Varying

8/30/2022 CMPU 101: Problem Solving and Abstraction

Functional Abstraction 2/3

Draw a traffic light
above(circle(40, "solid", "red"),
above(circle(40, "solid", "yellow"),
circle(40, "solid", "green")))

Can be changed to
bulb(color):
circle(40, "solid", color)

above(bulb("red"),
above(bulb("yellow"),
bulb("green")))

9/5/2022 CMPU 101: Problem Solving and Abstraction

16

Functional Abstraction: 3/3 (kicking it up a notch) @

bulb(color):
circle(40, "solid", color)

traffic-light():
above(bulb("red"),
above(bulb("yellow"),
bulb(“"green')))

9/5/2022 CMPU 101: Problem Solving and Abstraction 17

Functional Abstraction: Back To Baking @

* Consider Mary’s cake shop (again)

* We want to determine the price of each cake based on the cost of the
ingredients and the time to prepare it.

* The price is twice the cost of the ingredients plus 1/4 of the preparation
time in minutes.

* One approach: consider each cake, separately

Chocolate cake
Ingredients: $10 choc—cake-price = (2 x 10) + (0.25 x 20)
Preparation time: 20 minutes

Cheesecake
Ingredients: $15 cheesecake-price = (2 % 15) + (0.25 % 36)
Preparation time: 36 minutes

9/5/2022 CMPU 101: Problem Solving and Abstraction 18

Functional Abstraction: Ace of Cakes Functions @

* Looking more closely...
* The price is twice the cost of the ingredients plus 1/4 of the preparation time in minutes.

* Use functions to avoid repetitive code when performing the same operations with different values.

* Purple font/arrows: different values? Hmm... should be a parameter!
Cost of the Preparation time

ingredients

Chocolate cake
Ingredients: $10 choc—cake-price = (2 x\10) + (0.25 *§20)

Preparation time: 20 minutes

Cheesecake
Ingredients: $15 cheesecake—-price = (2 % 15) + (0.25 % 36)

Preparation time: 36 minutes

9/5/2022 CMPU 101: Problem Solving and Abstraction 19

Informal Definition @

* Parameters: generic names representing values that are passed into a
function & are required/needed for creating a result.

fun
cake-price (ingredients-cost, prep-time) :
(2 * i1ngredients-cost) + (0.25 * prep-time)
end

* Using our cake example, we can now calculate cost of any kind of
cake by calling the cake-price function.

Price of chocolate cake
cake-price (10, 20)

Price of cheesecake
cake-price (15, 36)

8/30/2022 CMPU 101: Problem Solving and Abstraction 20

Making bitter-batter-betterwith-butter functions better @

* Improved definition: Parameters: generic names representing values of a
particular type that are passed into a function & are required/needed for
creating a result.

fun

cake-price (ingredients—-cost ::Number, prep-time ::
Number) :

(2 * 1ngredients-cost) + (0.25 * prep-time)
end

* We specify the type of each parameter so that Pyret will check that the right type of values are actually
being passed. Why does this matter?

8/30/2022 CMPU 101: Problem Solving and Abstraction 21

Making bitter-batter-betterwith-butter functions better @

* Improved definition: Parameters: generic names representing values of a
particular type that are passed into a function & are required/needed for
creating a result.

fun
cake-price (ingredients-cost ::Number, prep-time :
Number) :
(2 * 1ngredients-cost) + (0.25 * prep-time)
end

* We specify the type of each parameter so that Pyret will check that the right type of values are actually
being passed. Why does this matter?

Answer: so that we can fail fast and discover problems faster than if we didn’t check

9/5/2022 CMPU 101: Problem Solving and Abstraction 22

Making functions better (returning a result) @

* We can do this for the function result (i.e. return type) too!

fun

cake-price (ingredients-cost :: Number, prep-time
Number) ->Number:

(2 * ingredients-cost) + (0.25 * prep-time)

end

* We specify the type of the return value to maintain data consistency

i.e. so that we can fail fast when calling a function and naming the result!

9/5/2022 CMPU 101: Problem Solving and Abstraction 23

Using pyret

TR

1 |use context essentials2021

v View Connect to Google Drive

2 v fun

3 cake-price(ingredients-cost :: Number, prep-time ::
Number:

4 (2 * ingredients-cost) + (0.25 * prep-time)

5 end

6

8/30/2022

Number) ->

» cake-price(5, 9)
12.25

» cake-price("bam", "chocolate")

Stop

The Number annotation

was not satisfied by the value

n baml'l
(Show program evaluation trace...)

__

» cost = cake-price(5, 9)

M

CMPU 101: Problem Solving and Abstraction

24

Making functions better (epilogue) @

* It’s a good idea to let the-instruector other programmers know what a
function does!

fun
cake-price (ingredients—-cost :: Number, prep-time
Number) -> Number:

doc: "Calculate price of cake based on ingredient cost and prep time"
(2 * ingredients-cost) + (0.25 * prep-time)

end

 We document the function so that a user of the function, or one who maintains it, can understand and
use it properly.
i.e. so that we don’t have to fail at all!

9/5/2022 CMPU 101: Problem Solving and Abstraction 25

More On Failing Fast (i.e. testing) @

* Consider the following function which includes some test information

fun cakes-to-make (num-sold :: Number) -> Number:
doc: "Compute the number of cakes to make based on
the previous number sold"

num—-sold + 2

where:
cakes-to-make (0) 1is 2
cakes-to-make (107) 1s 109

End

* But what if we happens to make a typo in pyret...

8/30/2022 CMPU 101: Problem Solving and Abstraction 26

More On Failing Fast (i.e. testing)

1 ' use context essentials2021
2 v fun cakes-to-make(num-sold :: Number) -> Number: doc: "Compute the
number of cakes to make based on the previous number sold"
num-sold + 22
where:
cakes-to-make(®) is 2
cakes-to-make(107) 1s,109
end

o0 oo B~ W

0

TESTS PASSED

cakes-to-make

0 out of 2 tests passed in this block.

Test 1: Failed

The test operator 1s failed for the test:

cakes-to-make(@) is 2

It succeeds only if the left side and right side are equal.

The left side was:
22

The right side was:
2

2
TESTS FAILED

Hide Details

definitions://-:4:3-4:24

Test 2: Failed

The test operator 1s failed for the test:

9/5/2022 CMPU 101: Problem Solving and Abstraction

definitions://:5:3-5:28

27

Another Testing Example @

* Consider the following function which uses an image!
fun rectangle-area(r :: Image) -> Number:

doc: "Return the rectangular area of the i1mage"
image—-height (r) * i1mage-width(r)

where: rectangle-area(rectangle (0, 0, "solid",
"black")) 1s O

rectangle-area (rectangle (2, 3, "outline", "blue"))
1s ©

end

9/5/2022 CMPU 101: Problem Solving and Abstraction 28

Another Testing Example: epilogue

v % v View Connect to Google Drive “I Stop

1 |use context essentials2021

2 v fun rectangle-area(r :: Image) -> Number: Looks shipshape, both tests passed, mate!

3 doc: "Return the rectangular area of the image" image-height(r) =*
image-width(r)

4 where: rectangle-area(rectangle(®, 0, "solid", "black")) is @ W. Show Details
5 rectangle-area(rectangle(2, 3, "outline", "blue")) is 6 All 2 tests in this block passed.

6 end

7 3}

9/5/2022 CMPU 101: Problem Solving and Abstraction 29

Another Testing Example: epilogue

Achievement
unlocked: pyret

talks like a
pirate!

v % v View Connect to Google Drive Stop

1 |use context essentials20621

2+ fun rectangle-area(r :: Image) -> Number: Looks shipshape, both tests passed, mate!

3 doc: "Return the rectangular area of the image" image-height(r) =*
image-width(r)

4 where: rectangle-area(rectangle(®, 0, "solid", "black")) is @ W. Show Details
5 rectangle-area(rectangle(2, 3, "outline", "blue")) is 6 All 2 tests in this block passed.

6 end

7 »

9/5/2022 CMPU 101: Problem Solving and Abstraction 30

