
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Functions… kinda like f(x)

A quick review of last week’s concepts

• We’ve been using Pyret to write expressions that use:
1. Data, including numbers (0, -10, 0.4),
2. strings ("" , "hi", "111"),
3. images (circle(2, "solid", "red")).

• Which we modify or combine using operators or functions
1. +

2.string-append

3.overlay

8/30/2022 2CMPU 101: Problem Solving and Abstraction

A quick review of last week’s concepts

• We’ve been using Pyret to write expressions that use:
1. Data, including numbers (0, -10, 0.4),
2. strings ("" , "hi", "111"),
3. images (circle(2, "solid", "red")).

• Which we modify or combine using operators or functions
1. +

2.string-append

3.overlay

9/5/2022 3CMPU 101: Problem Solving and Abstraction

Operator

Function

Function

Errrors

• IRL Software Problems are expensive when found by customers
• In terms of cost of lost revenue, fixing the problem, brand satisfaction

• Typically called “run time errors”

• Less expensive if found before released to customers

• The cost of a problem is lower… the earlier a problem is discovered

• Lowest cost: finding a problem immediately after we write it!
• This is what pyret does as you type code

• This is also what happens when you click on

• In Agile programming terms: Fail Fast

8/30/2022 CMPU 101: Problem Solving and Abstraction 4

Fail Fast

• …google search:

8/30/2022 CMPU 101: Problem Solving and Abstraction 5

What else did we observe last week?

• We can create (more) sophisticated code by combining functions
and operators

• …essentially creating expressions
• 1 + (7 / 8)

• string-append(“Computer”, “Science”)

• We can name our expressions too

• …more precisely, the results of our expressions
• my-major = string-append(“Computer”, “Science”)

8/30/2022 CMPU 101: Problem Solving and Abstraction 6

Today’s Topic: Functions

•In mathematics:
•f(x) = x3 + 2x + 1

•In Pyret Programming:
•We need a way to tell Pyret we have a function:
fun

f(x): = (x * x * x) + (2 * x) + 1

end

8/30/2022 CMPU 101: Problem Solving and Abstraction 7

Pyret Function Syntax

9/5/2022 CMPU 101: Problem Solving and Abstraction 8

• Angle brackets < > refer to something that is optional
• Technically, the ellipse should have angle brackets too!

• Another name for arg-name is parameter

SSE: Super Simple Example

8/30/2022 CMPU 101: Problem Solving and Abstraction 9

SSE: Pyret function elements 1/5

9/5/2022 CMPU 101: Problem Solving and Abstraction 10

SSE: Pyret function elements 2/5

9/5/2022 CMPU 101: Problem Solving and Abstraction 11

SSE: Pyret function elements 3/5

9/5/2022 CMPU 101: Problem Solving and Abstraction 12

SSE: Pyret function elements 4/5

9/5/2022 See Calvin & Hobbes for transmogrify comic 13

Transmogrify data

SSE: Pyret function elements 5/5

9/5/2022 CMPU 101: Problem Solving and Abstraction 14

Functional Abstraction 1/3

8/30/2022 CMPU 101: Problem Solving and Abstraction 15

Functional Abstraction 2/3

9/5/2022 CMPU 101: Problem Solving and Abstraction 16

Functional Abstraction: 3/3 (kicking it up a notch)

9/5/2022 CMPU 101: Problem Solving and Abstraction 17

Functional Abstraction: Back To Baking

9/5/2022 CMPU 101: Problem Solving and Abstraction 18

• Consider Mary’s cake shop (again)

• We want to determine the price of each cake based on the cost of the
ingredients and the time to prepare it.

• The price is twice the cost of the ingredients plus 1/4 of the preparation
time in minutes.

• One approach: consider each cake, separately

Functional Abstraction: Ace of Cakes Functions

9/5/2022 CMPU 101: Problem Solving and Abstraction 19

• Looking more closely…
• The price is twice the cost of the ingredients plus 1/4 of the preparation time in minutes.

• Use functions to avoid repetitive code when performing the same operations with different values.

• Purple font/arrows: different values? Hmm… should be a parameter!
Cost of the
ingredients

Preparation time

Informal Definition

• Parameters: generic names representing values that are passed into a
function & are required/needed for creating a result.

fun

cake-price(ingredients-cost, prep-time):

(2 * ingredients-cost) + (0.25 * prep-time)

end

• Using our cake example, we can now calculate cost of any kind of
cake by calling the cake-price function.
Price of chocolate cake

cake-price(10, 20)

Price of cheesecake

cake-price(15, 36)

8/30/2022 CMPU 101: Problem Solving and Abstraction 20

Making bitter batter better with butter functions better

• Improved definition: Parameters: generic names representing values of a
particular type that are passed into a function & are required/needed for
creating a result.

fun

cake-price(ingredients-cost :: Number, prep-time ::
Number):

(2 * ingredients-cost) + (0.25 * prep-time)

end

• We specify the type of each parameter so that Pyret will check that the right type of values are actually
being passed. Why does this matter?

8/30/2022 CMPU 101: Problem Solving and Abstraction 21

Making bitter batter better with butter functions better

• Improved definition: Parameters: generic names representing values of a
particular type that are passed into a function & are required/needed for
creating a result.

fun

cake-price(ingredients-cost :: Number, prep-time ::
Number):

(2 * ingredients-cost) + (0.25 * prep-time)

end

• We specify the type of each parameter so that Pyret will check that the right type of values are actually
being passed. Why does this matter?

Answer: so that we can fail fast and discover problems faster than if we didn’t check

9/5/2022 CMPU 101: Problem Solving and Abstraction 22

Making functions better (returning a result)

• We can do this for the function result (i.e. return type) too!

fun

cake-price(ingredients-cost :: Number, prep-time ::

Number) -> Number:

(2 * ingredients-cost) + (0.25 * prep-time)

end

• We specify the type of the return value to maintain data consistency
i.e. so that we can fail fast when calling a function and naming the result!

9/5/2022 CMPU 101: Problem Solving and Abstraction 23

Using pyret

8/30/2022 CMPU 101: Problem Solving and Abstraction 24

Making functions better (epilogue)

• It’s a good idea to let the instructor other programmers know what a
function does!

fun

cake-price(ingredients-cost :: Number, prep-time ::

Number) -> Number:

doc: "Calculate price of cake based on ingredient cost and prep time"

(2 * ingredients-cost) + (0.25 * prep-time)

end

• We document the function so that a user of the function, or one who maintains it, can understand and
use it properly.

i.e. so that we don’t have to fail at all!

9/5/2022 CMPU 101: Problem Solving and Abstraction 25

More On Failing Fast (i.e. testing)

8/30/2022 CMPU 101: Problem Solving and Abstraction 26

• Consider the following function which includes some test information

fun cakes-to-make(num-sold :: Number) -> Number:

doc: "Compute the number of cakes to make based on

the previous number sold"

num-sold + 2

where:

cakes-to-make(0) is 2

cakes-to-make(107) is 109

End

• But what if we happens to make a typo in pyret…

More On Failing Fast (i.e. testing)

9/5/2022 CMPU 101: Problem Solving and Abstraction 27

Another Testing Example

9/5/2022 CMPU 101: Problem Solving and Abstraction 28

• Consider the following function which uses an image!

fun rectangle-area(r :: Image) -> Number:

doc: "Return the rectangular area of the image"

image-height(r) * image-width(r)

where: rectangle-area(rectangle(0, 0, "solid",

"black")) is 0

rectangle-area(rectangle(2, 3, "outline", "blue"))

is 6

end

Another Testing Example: epilogue

9/5/2022 CMPU 101: Problem Solving and Abstraction 29

Another Testing Example: epilogue

9/5/2022 CMPU 101: Problem Solving and Abstraction 30

Achievement
unlocked: pyret

talks like a
pirate!

