
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Designing Programs for Tables

Semester Recap:

1. We can represent complex data as tables…
• encoded directly in a program or loaded from an external source.
• Real data may need (automatic/manual) clean-up.

2. We can use sanitizers for automatic data clean-up to…
• Ensure all data in a column is of the desired type, with default values for null data.
• But “real data” sets can be much harder to work with than contrived examples:

• Missing values
• Inconsistent entry of data
• Differing levels of precision (dates like: 1987 vs 7 July 1987)

3. We can modify table data by hand
• This begs the question: Should we modify table data by hand?

4. We can modify table data later using transform-column

5. We can remove (apparent) bad data using filter-with.

9/26/2022 CMPU 101: Problem Solving and Abstraction 2

https://nulldata.com/

Semester Recap:

1. We can represent complex data as tables…
• encoded directly in a program or loaded from an external source.
• Real data may need (automatic/manual) clean-up.

2. We can use sanitizers for automatic data clean-up to…
• Ensure all data in a column is of the desired type, with default values for null data.
• But “real data” sets can be much harder to work with than contrived examples:

• Missing values
• Inconsistent entry of data
• Differing levels of precision (dates like: 1987 vs 7 July 1987)

3. We can modify table data by hand
• This begs the question: Should we modify table data by hand?

4. We can modify table data later using transform-column

5. We can remove (apparent) bad data using filter-with.

9/26/2022 CMPU 101: Problem Solving and Abstraction 3

https://nulldata.com/

Semester Recap:

1. We can represent complex data as tables…
• encoded directly in a program or loaded from an external source.
• Real data may need (automatic/manual) clean-up.

2. We can use sanitizers for automatic data clean-up to…
• Ensure all data in a column is of the desired type, with default values for null data.
• But “real data” sets can be much harder to work with than contrived examples:

• Missing values
• Inconsistent entry of data
• Differing levels of precision (dates like: 1987 vs 7 July 1987)

3. We can modify table data by hand
• This begs the question: Should we modify table data by hand?

4. We can modify table data later using transform-column

5. We can remove (apparent) bad data using filter-with.

9/26/2022 CMPU 101: Problem Solving and Abstraction 4

https://nulldata.com/

Semester Recap:

1. We can represent complex data as tables…
• encoded directly in a program or loaded from an external source.
• Real data may need (automatic/manual) clean-up.

2. We can use sanitizers for automatic data clean-up to…
• Ensure all data in a column is of the desired type, with default values for null data.
• But “real data” sets can be much harder to work with than contrived examples:

• Missing values
• Inconsistent entry of data
• Differing levels of precision (dates like: 1987 vs 7 July 1987)

3. We can modify table data by hand
• This begs the question: Should we modify table data by hand?

4. We can modify table data later using transform-column

5. We can remove (apparent) bad data using filter-with.

9/26/2022 CMPU 101: Problem Solving and Abstraction 5

https://nulldata.com/

Semester Recap:

1. We can represent complex data as tables…
• encoded directly in a program or loaded from an external source.
• Real data may need (automatic/manual) clean-up.

2. We can use sanitizers for automatic data clean-up to…
• Ensure all data in a column is of the desired type, with default values for null data.
• But “real data” sets can be much harder to work with than contrived examples:

• Missing values
• Inconsistent entry of data
• Differing levels of precision (dates like: 1987 vs 7 July 1987)

3. We can modify table data by hand
• This begs the question: Should we modify table data by hand?

4. We can modify table data later using transform-column

5. We can remove (apparent) bad data using filter-with.

9/26/2022 CMPU 101: Problem Solving and Abstraction 6

https://nulldata.com/

Last Friday’s Lab

9/26/2022 CMPU 101: Problem Solving and Abstraction 7

• We saw this clean-up process in our lab by looking at the student data
from the form (none of) you filled out.
• That’s because I never sent out the email to have you fill out the form.

• Let’s continue to use this data set though…

Task plans

9/26/2022 CMPU 101: Problem Solving and Abstraction 8

• If you aren’t sure how to approach a problem, utilize a set of procedures to
design a solution & identify code you need to write:

1. Develop a concrete example of desired output
• Typically, a table with 4–6 rows

2. Identify functions useful to transform data
• Functions you already know or look up in the documentation

3. Develop a sequence of steps to transform data
• Draw as pictures, use textual descriptions, or a combination of the two

• Use functions from previous step

4. Repeat Step 3 to further break down steps until it is easy to write
expressions/functions for each step

Example: “Bin”ning

9/26/2022 CMPU 101: Problem Solving and Abstraction 9

• How should we consider the distribution of responses to this question…

• We don’t particularly care about how many
students rated their STEM-iness as 2 or 8 or any
particular number.

• Instead, we might want to bin the responses into a
few categories.

Example: “Bin”ning

non-STEM STEM super-STEM

1

7

10
3

8Example: “Bin”ning

non-STEM STEM super-STEM

1 7 103 8

Example: “Bin”ning

task plan

9/26/2022 CMPU 101: Problem Solving and Abstraction 13

• To count the number of students in these three categories

• SNAPSHOT: TBD (Let’s develop one together)

task plan

9/26/2022 CMPU 101: Problem Solving and Abstraction 14

• To count the number of students in these three categories

• SNAPSHOT: TBD (Let’s develop one together)

task plan

9/26/2022 CMPU 101: Problem Solving and Abstraction 15

• More formally,

1. Write stem-category.

2. Add stem category to table using build-column.

3. Summarize results using count.

4. Visualize the results using pie-chart.

test-table =

table: stem-level

row: 1

row: 3

row: 4

row: 7

row: 8

row: 10

end

The test table can omit the columns
we’re not using!

Let’s develop code + tests (1st requires a table)

test-table =

table: stem-level

row: 1

row: 3

row: 4

row: 7

row: 8

row: 10

end

fun stem-category(r :: Row) -> String:

doc: "Return a stem category (non-stem, stem, or super-stem) for a given stem-level"

#tbd...

where:

stem-category(test-table.row-n(0)) is "non-stem"

stem-category(test-table.row-n(1)) is "non-stem"

stem-category(test-table.row-n(2)) is "stem"

stem-category(test-table.row-n(3)) is "stem"

stem-category(test-table.row-n(4)) is "super-stem"

stem-category(test-table.row-n(5)) is "super-stem"

end

The test table can omit the columns
we’re not using!

If the survey data changes, our tests
will
still pass!

(2nd: create stem-category column using helper F)

fun stem-category(r :: Row) -> String:
doc: "Return a stem category (non-stem, stem, super-stem) for a given stem-level"
s = r["stem-level"]
if s < 4:

"non-stem"
else if s < 8:

"stem"
else:

"super-stem"
end

where:
#tests on previous slide...

end

(2nd helper function details)

data-stem-category =
build-column(student-data-cleaned,

"stem-category", stem-category)

the ++ part
count the population in each category
counts =

count(data-stem-category, "stem-category")

#then provide visual representation
pie-chart(counts, "value", "count")

(3rd build column called stem-category++)

Nested Functions

9/26/2022 CMPU 101: Problem Solving and Abstraction 20

One approach to student-athletes question

fun percent-true(t :: Table, col :: String) -> Number:

doc: "Return the percentage of rows that are true in column 'col'"

...

end

9/26/2022 CMPU 101: Problem Solving and Abstraction 21

Developing precent-true

fun percent-true(t :: Table, col :: String) -> Number:

doc: "Return the percentage of rows that are true in column 'col'"

filter-with(t, ???).length() / t.length()

end

#??? --> need a helper function here to get us the columns with true

9/26/2022 CMPU 101: Problem Solving and Abstraction 22

A(n incorrect) helper function for precent-true
(A few students ran into this exact problem on Friday!)

fun true-filter(r :: Row) -> Boolean:
doc: "Return true if 'col' is true in this row"
r[col] #more like return value of column!

end

fun percent-true(t :: Table, col :: String) -> Number:

doc: "Return the percentage of rows that are true in column 'col'"

filter-with(t, true-filter).length() / t.length()

end

9/26/2022 CMPU 101: Problem Solving and Abstraction 23

What is wrong with this approach

• col is undefined in true-filter

• Pyret only knows the value for col when you’re “inside” percent-true

• This means we need to define true-filter “inside” percent-true
• i.e. nest the helper function

9/26/2022 CMPU 101: Problem Solving and Abstraction 24

A (correct) helper function for precent-true

fun percent-true(t :: Table, col :: String) -> Number:
doc: "Return the percentage of rows that are true in column 'col’”
#nest true filter within percent-true & before actual code
fun true-filter(r :: Row) -> Boolean:

r[col]
end

filter-with(t, true-filter).length() / t.length()
end

9/26/2022 CMPU 101: Problem Solving and Abstraction 25

Add a test table to complete the solution

• As usual, let’s test our function using a simple test table:
test-table-student-athlete =

table:

student-athlete

row: true

row: false

end

fun percent-true(t :: Table, col :: String) -> Number:

...

where:

percent-true(test-table-student-athlete, "student-athlete") is 0.5

end

9/26/2022 CMPU 101: Problem Solving and Abstraction 26

Q: When do you need to nest a helper function?

A: if that function needs data that can’t be
passed in directly to the function.

9/26/2022 CMPU 101: Problem Solving and Abstraction 27

Access to the code from this lecture

Includes virtually all suggested lab solutions!

https://code.pyret.org/editor#share=1WXx7yJvtOKJtXjza0CdCi8gdtozF8ZnR&v=31c9aaf

9/26/2022 CMPU 101: Problem Solving and Abstraction 28

https://code.pyret.org/editor#share=1WXx7yJvtOKJtXjza0CdCi8gdtozF8ZnR&v=31c9aaf

Acknowledgements

9/26/2022 CMPU 101: Problem Solving and Abstraction 29

• This lecture incorporates material from:

• Kathi Fisler, Brown University,

• Gregor Kiczales, University of British Columbia,

• And, Jonathan Gordon

