THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR
ALL AUDIENCES
BY THE MOTION PICTURE ASSOCIATION OF AMERICA

THE FILM A ERTISED HAS BEEN RATED

[&
joey

_ (A0 R ERJIINACA.T S X L 1.0 08 .

G| GENERAL AUDIENCES

All Ages Admitted &>

For information on film ratings,
go to www.filmratings.com

Function Call vs. Inline Function @

° A fu nCt|On Cd I I is, essentially, a “break in the action” for a CPU

e Such that it might take a moment to find out where that function actually is:
* They could be built-in or user written, like the textbook functions we have to include

- AnIN I Ine fu nCtIOH is code that the CPU can execute line-by-line

e Similar to how one would read a book (no skipping around!)

9/26/2022 CMPU 101: Problem Solving and Abstraction 2

Introducing: A

fun percent-true(t :: Table, col :: String) -> Number:
doc: "Return the percentage of rows that are true in column 'col""

fun true-filter(r :: Row) -> Boolean:
r[col]
end

filter-with(t, true-filter).length() / t.length()
end

* # The nested function true-filter is only used (called) in one location
* Do we have to name it and call it if we’re only going to do this once?

. Spoiler alert: No, we don’t!

9/26/2022 CMPU 101: Problem Solving and Abstraction

Introducing: A

fun percent-true(t :: Table, col :: String) -> Number:
doc: "Return the percentage of rows that are true in column 'col""

filter-with(t, lam(r): r[col] end).length()
/ t.length()

filter-with(t, true-filter).length() / t.length()
end

* # We can instruct pyret to use an unnamed function!
* It will only ever be executed in-line (and from within filter-with)

9/26/2022 CMPU 101: Problem Solving and Abstraction

Definition: A @

* A lambda expression defines an anonymous function

* i.e. a function that can be passed as an argument but doesn’t have
an associated name.

* A lambda expression is executed as an in-line function
* And can improve application performance (why?)

* They are a common feature in modern programming languages

* Recognize them, but use them as you become comfortable using them.
* Useful as “helper functions”
* Nothing wrong with named functions!

9/26/2022 CMPU 101: Problem Solving and Abstraction 5

Rows are easy to access.

.row-n gives us a row in a table...

9/26/2022

timestamp

"2/89/2022

"2/89/2822

"2/09/2022

"2/10/20822

"2/10/20822

"2/10/2822

"2/10/2022

"2/10/20822

"2/10/2822

"2/10/2022

19:

20:

20

0a:

13:

13:

14:

14

14:

14:

83:33"

pe:52"

:36:00"

15:17"

459:27"

53:12"

B05:47"

:06:22"

26:46"

35:15"

house

"OTHER"

"Mail‘l"

“Main”

"Strong"

"OTHER"

"Davison”

"Josselyn”

"Strong"

"Jewett"

"OTHER"

stem-
level

1@

Click to show the remaining 23 rows...

sleep-
hours

schoolwork-
hours

10

student-
athlete

false

true

true

false

true

false

false

false

false

true

CMPU 101: Problem Solving and Abstraction

Rows are easy to access. But what about columns? @

.row-n gives us a row in a table... _

timestamp stem- sleep- schoolwork- student-
level hours hours athlete

How can we access all the elements ,, N
2/09/2022 19:03:33 OTHER 6 & 10 false

[I ?

In One CO umn * "2/09/2822 20:00:52" “Main” 10 4 7 true
"2/09/2022 20:36:08" “Main” 8 9 6 true
"2/10/2022 00:15:17" “Strong" 3 5 7 false
"2/10/2822 13:49:27" "OTHER" 8 8 5 true
"2/10/2822 13:53:12" "Davison” 1 7 7 false
"2/10/2022 14:05:47" "Josselyn” 7 7 5 false
"2/10/2022 14:06:22" “Strong" 7 8 6 false
"2/10/2822 14:26:45" "Jewett" g 6 5 false
"2/18/2022 14:35:15" 9 7 6 true
Click to show the rem#ining 23 rowd...

9/26/2022 CMPU 101: Problem Solving and Abstraction 7

Introducing: lists

.row-n gives us a row in a table...

How can we access all the elements
in one column?

A: get-column
Example:

student-data-cleaned.get-column("house")
[list: "OTHER", "Main", "Main", "Strong", ...]

9/26/2022 CMPU 101: Problem Solving and Abstraction

stem-
level

timestamp

"2/89/2022 19:03:33" "OTHER"
"2/89/2022 20:08:52" “Main”
"2/89/2022 20:36:00" “Main"
"2/10/2022 00:15:17" "Strong"
"2/10/2022 13:49:27" "OTHER"
"2/18/2022 13:53:12" “Davison”
"2/10/2022 14:05:47" "Josselyn”
"2/10/2022 14:06:22" "Strong"
"2/10/2022 14:26:46" "Jewett"
"2/10/2022 14:35:15"

Click to show the remfining 23 rowd...

sleep-
hours

schoolwork-
hours

10

7

student-
athlete

false

true

true

false

true

false

false

false

false

true

Introducing: lists

The concept is similar to Zeyu Zheng’s solution from earlier in the
lecture!

* in that solution, there was one big string with all the house names. (kind-of list)
* string-contains was used to find the desired string in “list” of house names

 What if we want to use the “substrings” independently.
* Itis messy to separate each house name!

* What if we wanted to do something similar with numbers or Booleans or...

* a general all-purpose solution for all data types besides strings is
needed

9/26/2022 CMPU 101: Problem Solving and Abstraction

Introducing: lists for student data

houses = [list: "Main", "Strong", "Raymond",

"Davison", "Lathrop", "Jewett", "Josselyn",

"Cushing", "Noyes"]

normalize-house(house :: String) -> String:
: "Return one of the nine Vassar houses or 'Other""
member(houses, house):
house

"Other"

normalize-house("Main") is "Main"
normalize-house("Offcampus") is "Other"

9/26/2022 CMPU 101: Problem Solving and Abstraction

houses, pictorally

10

Link to code @

* https://code.pyret.org/editor#tshare=1WXx7yJvtOKJtXjzaOCdCi8gdtozF8ZnR&v=31c9aaf

9/26/2022 CMPU 101: Problem Solving and Abstraction 11

https://code.pyret.org/editor#share=1WXx7yJvtOKJtXjza0CdCi8gdtozF8ZnR&v=31c9aaf

Acknowledgements

* This lecture incorporates material from:
 Kathi Fisler, Brown University,

 Jason Waterman, Vassar College

* And, Jonathan Gordon, Vassar College

9/26/2022 CMPU 101: Problem Solving and Abstraction

12

