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Lists



Introducing: lists

.row-n gives us a row in a table…

How can we access all the elements 
in one column?

A: get-column

Example:

student-data-cleaned.get-column("house")

[list: "OTHER", "Main", "Main", "Strong", ...]

9/25/2022 CMPU 101: Problem Solving and Abstraction 2



Introducing: lists for student data
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houses = [list: "Main", "Strong", "Raymond", 
"Davison", "Lathrop", "Jewett", "Josselyn", 
"Cushing", "Noyes"]

fun normalize-house(house :: String) -> String:
doc: "Return one of the nine Vassar houses or 'Other'"
if L.member(houses, house):

house
else:

"Other"
end

where:
normalize-house("Main") is "Main"
normalize-house("Offcampus") is "Other"

end

houses, pictorally



Using Lists

• To work with lists, the statement: 
• use context essentials2021

• Will provide list capabilities.
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Let’s play a game!

• Mad Libs
• Given a part of speech (noun, verb, etc.) create a random word that fits 

• Then, a sentence requiring that part of speech is shown, with that word!

• In doing so we create a hilarious sentence!

• An example: Plural-Noun
• Answer: Rocks
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Let’s play a game!

• Mad Libs
• Given a part of speech (noun, verb, etc.) create a random word that fits 

• Then, a sentence requiring that part of speech is shown, with that word!

• In doing so we create a hilarious sentence!

• An example: Plural-Noun
• Answer: Rocks

• The sentence:
• We saw many Plural-Noun on vacation this summer!

• Becomes:
• We saw many Rocks on vacation this summer!
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Thousands of Plural-Noun ago, there were calendars 
that enabled the ancient Plural-Noun to divide a year 
into twelve Plural-Noun, each month into Number
weeks, and each week into seven Plural-Noun. At first, 
people told time by a sun clock, sometimes known as the 
Noun dial. Ultimately, they invented the great 
timekeeping devices of today, such as the grandfather 
Noun, the pocket Noun, the alarm Noun, and, of course, 
the Body-Part watch. Children learn about clocks and 
time almost before they learn their A-B- Alphabet-Letter
s. They are taught that a day consists of 24 Plural-Noun, 
an hour has 60 Plural-Noun, and a minute has 60 Plural-
Noun. By the time they are in Kindergarten, they know if 
the big Body-Part is at twelve and the little Body-Part is 
at three, that it is Number o’clock. I wish we could 
continue this Adjective lesson, but we’ve run out of 
Noun.
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Q: How can we represent text?

template = "Thousands of Plural-Noun ago, there were calendars that 
enabled the ancient Plural-Noun to divide a year into twelve Plural-Noun , 
each month into Number weeks, and each week into seven Plural-Noun . At 
first, people told time by a sun clock, sometimes known as the Noun dial. 
Ultimately, they invented the great timekeeping devices of today, such as the 
grandfather Noun , the pocket Noun , the alarm Noun , and, of course, the 
Body-Part watch. Children learn about clocks and time almost before they 
learn their A-B- Alphabet-Letter s. They are taught that a day consists of 24 
Plural-Noun , an hour has 60 Plural-Noun , and a minute has 60 Plural-Noun . 
By the time they are in Kindergarten, they know if the big Body-Part is at 
twelve and the little Body-Part is at three, that it is Number o'clock. I wish 
we could continue this Adjective lesson, but we’ve run out of Noun ."
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A: As a list of words!

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]
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From the documentation

9/27/2022 CMPU 101: Problem Solving and Abstraction 11



From the documentation
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We now return you to our list of words

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

#shout out to “Plural-Noun”

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]
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We now return you to our list of words

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

#shout out to “Plural-Noun”

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]
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Let’s diagram what we want to do

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

string-split-all



"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

From “Plural-Noun” to “gazebos”



"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

From “Plural-Noun” to “gazebos”



"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

substitute-word does what we want

substitute-word

"Thousands" -> "Thousands"

"Plural-Noun" -> "gazebos"



• How can we represent a text?



Let’s write the helper function substitute-word
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fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is ...

end



Just one question – what word should we use?
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fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is ...

end



Well, we know what word it isn’t (is-not)!
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fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun"

end



Getting closer…
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plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun“

member(
plural-nouns,
substitute-word("Plural-Noun"))
is true

end



Getting closer… but we want some randomness!
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plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":

...
else:

w
end

where:
...

end



Ripped from the documentation
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https://www.pyret.org/docs/latest/numbers.html(part._numbers_num-random)


Ok… how do we get from random number to…
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https://www.pyret.org/docs/latest/numbers.html(part._numbers_num-random)


…a random list item?
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• With a table, we use .row-n to get a specific row by its index number.

• With a list, we can use get to get an item.



…a random list item?
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• With a table, we use .row-n to get a specific row by its index number.

• With a list, we can use get to get an item.
• So…

• Get a random number. Then,
• Get list element(item) positioned at that number



Adding randomness to our code
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plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == “Plural-Noun": #we want a Plural Noun!

...
else:

w
end

where:
...

end



Adding randomness to our code
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plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == “Plural-Noun":
rand = num-random(3) #we have 3 items in our plural-nouns list
get(plural-nouns, rand)

else:
w

end
where:

else:
w

end
where:

...
end



Q:Do we have to know how many plural-nouns we have?
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plural-nouns = [list: "gazebos", "avocados", "umiaks", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == “Plural-Noun":
rand = num-random(3) #we have 3 items in our plural-nouns list… oops, no we don’t
get(plural-nouns, rand)

else:
w

end
where:

else:
w

end
where:

...
end



A: No, we don’t!

9/27/2022 CMPU 101: Problem Solving and Abstraction 32

plural-nouns = [list: "gazebos", "avocados", "umiaks",  "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"

if w == “Plural-Noun":

rand = num-random(length(plural-nouns))
get(plural-nouns, rand)

else:
w

end
where:

else:
w

end
where:

...
end



The other parts of speech (data) for our madlib
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plural-nouns = 
[list: "gazebos", "avocados", “umiaks", “pandas"]

numbers = 
[list: "-1", "42", "a billion"]

nouns = 
[list: "apple", "computer", "borscht"]

body-parts = 
[list: "elbow", "head", "spleen"]

alphabet-letters = 
[list: "A", "C", "Z"]

adjectives = 
[list: "funky", "boring"]



Getting the rest of the random words
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plural-nouns = [list: "gazebos", "avocados", "umiaks",  "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"

if w == “Plural-Noun":
rand = num-random(length(plural-nouns))

get(plural-nouns, rand)
else if w == “Numbers":

rand = etc. etc. etc.
else if w == “Nouns":

rand = etc. etc. etc.

end
where:

else:
w

end
where:

...
end



Getting the rest of the random words

10/2/2022 CMPU 101: Problem Solving and Abstraction 35

plural-nouns = [list: "gazebos", "avocados", "umiaks",  "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"

if w == “Plural-Noun":
rand = num-random(length(plural-nouns))

get(plural-nouns, rand)
else if w == “numbers":

rand = etc. etc. etc.
else if w == “nouns":

rand = etc. etc. etc.

end
where:

else:
w

end
where:

...
end



Generalizing the call to num-random
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#address need for general utility that gives us a random word.

fun rand-word(l :: List<String>) -> String:

doc: "Return a random word in the given list"

rand = num-random(length(l))

get(l, rand)

where:

member(plural-nouns, rand-word(plural-nouns)) 

is true

end



Completing the helper function…
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fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":

rand-word(plural-nouns)
else if w == "Number":

rand-word(numbers)
else if w == "Noun":
rand-word(nouns)

else if w == "Body-Part":
rand-word(body-parts)

else if w == "Alphabet-Letter":
rand-word(alphabet-letters)

else if w == "Adjective":
rand-word(adjectives)

else:
w

end
end



Back to our task plan

• We’ve completed our helper, 

• Now we need to run it on every word in the list, the same way

• transform-column

• runs a function on every row of a table.
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Back to our task plan

• We’ve completed our helper, substitute-word!

• Now we need to run it on every word in the list, the same way

• transform-column

• runs a function on every row of a table.

• This is the way: map
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Mad-libs so far…

fun mad-libs(t :: List<String>) -> String:
doc: "Randomly fill in the blanks in the mad libs template"

map(substitute-word, t) #like transform-column

end
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Mad-libs so far… actually… 

fun mad-libs(t :: List<String>) -> String:
doc: “Actually… This only returns a list of strings "

map(substitute-word, t) #like transform-column

end

10/2/2022 CMPU 101: Problem Solving and Abstraction 41



… to the string documentation!
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https://www.pyret.org/docs/latest/lists.html(part._lists_join-str)


Mad-libs: final version

fun mad-libs(t :: List<String>) -> String:

doc: "Randomly fill in the blanks in the mad libs template"

# map(substitute-word, t) used on next line.

with-subs = map(substitute-word, t)

join-str(with-subs, " ")

end
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Link to code

• https://code.pyret.org/editor#share=1gNCCr9cAxOFqewY3Wx221gSqV-
JQho5n&v=31c9aaf
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