
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Lists

Introducing: lists

.row-n gives us a row in a table…

How can we access all the elements
in one column?

A: get-column

Example:

student-data-cleaned.get-column("house")

[list: "OTHER", "Main", "Main", "Strong", ...]

9/25/2022 CMPU 101: Problem Solving and Abstraction 2

Introducing: lists for student data

9/25/2022 CMPU 101: Problem Solving and Abstraction 3

houses = [list: "Main", "Strong", "Raymond",
"Davison", "Lathrop", "Jewett", "Josselyn",
"Cushing", "Noyes"]

fun normalize-house(house :: String) -> String:
doc: "Return one of the nine Vassar houses or 'Other'"
if L.member(houses, house):

house
else:

"Other"
end

where:
normalize-house("Main") is "Main"
normalize-house("Offcampus") is "Other"

end

houses, pictorally

Using Lists

• To work with lists, the statement:
• use context essentials2021

• Will provide list capabilities.

9/26/2022 CMPU 101: Problem Solving and Abstraction 4

Let’s play a game!

• Mad Libs
• Given a part of speech (noun, verb, etc.) create a random word that fits

• Then, a sentence requiring that part of speech is shown, with that word!

• In doing so we create a hilarious sentence!

• An example: Plural-Noun
• Answer: Rocks

9/26/2022 CMPU 101: Problem Solving and Abstraction 5

Let’s play a game!

• Mad Libs
• Given a part of speech (noun, verb, etc.) create a random word that fits

• Then, a sentence requiring that part of speech is shown, with that word!

• In doing so we create a hilarious sentence!

• An example: Plural-Noun
• Answer: Rocks

• The sentence:
• We saw many Plural-Noun on vacation this summer!

• Becomes:
• We saw many Rocks on vacation this summer!

9/26/2022 CMPU 101: Problem Solving and Abstraction 6

Thousands of Plural-Noun ago, there were calendars
that enabled the ancient Plural-Noun to divide a year
into twelve Plural-Noun, each month into Number
weeks, and each week into seven Plural-Noun. At first,
people told time by a sun clock, sometimes known as the
Noun dial. Ultimately, they invented the great
timekeeping devices of today, such as the grandfather
Noun, the pocket Noun, the alarm Noun, and, of course,
the Body-Part watch. Children learn about clocks and
time almost before they learn their A-B- Alphabet-Letter
s. They are taught that a day consists of 24 Plural-Noun,
an hour has 60 Plural-Noun, and a minute has 60 Plural-
Noun. By the time they are in Kindergarten, they know if
the big Body-Part is at twelve and the little Body-Part is
at three, that it is Number o’clock. I wish we could
continue this Adjective lesson, but we’ve run out of
Noun.

Thousands of Plural-Noun ago, there were calendars
that enabled the ancient Plural-Noun to divide a year
into twelve Plural-Noun, each month into Number
weeks, and each week into seven Plural-Noun. At first,
people told time by a sun clock, sometimes known as the
Noun dial. Ultimately, they invented the great
timekeeping devices of today, such as the grandfather
Noun, the pocket Noun, the alarm Noun, and, of course,
the Body-Part watch. Children learn about clocks and
time almost before they learn their A-B- Alphabet-Letter
s. They are taught that a day consists of 24 Plural-Noun,
an hour has 60 Plural-Noun, and a minute has 60 Plural-
Noun. By the time they are in Kindergarten, they know if
the big Body-Part is at twelve and the little Body-Part is
at three, that it is Number o’clock. I wish we could
continue this Adjective lesson, but we’ve run out of
Noun.

Q: How can we represent text?

template = "Thousands of Plural-Noun ago, there were calendars that
enabled the ancient Plural-Noun to divide a year into twelve Plural-Noun ,
each month into Number weeks, and each week into seven Plural-Noun . At
first, people told time by a sun clock, sometimes known as the Noun dial.
Ultimately, they invented the great timekeeping devices of today, such as the
grandfather Noun , the pocket Noun , the alarm Noun , and, of course, the
Body-Part watch. Children learn about clocks and time almost before they
learn their A-B- Alphabet-Letter s. They are taught that a day consists of 24
Plural-Noun , an hour has 60 Plural-Noun , and a minute has 60 Plural-Noun .
By the time they are in Kindergarten, they know if the big Body-Part is at
twelve and the little Body-Part is at three, that it is Number o'clock. I wish
we could continue this Adjective lesson, but we’ve run out of Noun ."

9/27/2022 CMPU 101: Problem Solving and Abstraction 9

A: As a list of words!

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

9/27/2022 CMPU 101: Problem Solving and Abstraction 10

From the documentation

9/27/2022 CMPU 101: Problem Solving and Abstraction 11

From the documentation

9/27/2022 CMPU 101: Problem Solving and Abstraction 12

We now return you to our list of words

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

#shout out to “Plural-Noun”

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

9/27/2022 CMPU 101: Problem Solving and Abstraction 13

We now return you to our list of words

template = "Thousands of Plural-Noun ago, …"

template-words = string-split-all(template, " ")

#shout out to “Plural-Noun”

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

9/27/2022 CMPU 101: Problem Solving and Abstraction 14

Let’s diagram what we want to do

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

string-split-all

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

From “Plural-Noun” to “gazebos”

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

From “Plural-Noun” to “gazebos”

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

substitute-word does what we want

substitute-word

"Thousands" -> "Thousands"

"Plural-Noun" -> "gazebos"

• How can we represent a text?

Let’s write the helper function substitute-word

9/27/2022 CMPU 101: Problem Solving and Abstraction 20

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is ...

end

Just one question – what word should we use?

9/27/2022 CMPU 101: Problem Solving and Abstraction 21

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is ...

end

Well, we know what word it isn’t (is-not)!

9/27/2022 CMPU 101: Problem Solving and Abstraction 22

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun"

end

Getting closer…

9/27/2022 CMPU 101: Problem Solving and Abstraction 23

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun“

member(
plural-nouns,
substitute-word("Plural-Noun"))
is true

end

Getting closer… but we want some randomness!

9/27/2022 CMPU 101: Problem Solving and Abstraction 24

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":

...
else:

w
end

where:
...

end

Ripped from the documentation

9/27/2022 CMPU 101: Problem Solving and Abstraction 25

https://www.pyret.org/docs/latest/numbers.html(part._numbers_num-random)

Ok… how do we get from random number to…

9/27/2022 CMPU 101: Problem Solving and Abstraction 26

https://www.pyret.org/docs/latest/numbers.html(part._numbers_num-random)

…a random list item?

9/27/2022 CMPU 101: Problem Solving and Abstraction 27

• With a table, we use .row-n to get a specific row by its index number.

• With a list, we can use get to get an item.

…a random list item?

9/27/2022 CMPU 101: Problem Solving and Abstraction 28

• With a table, we use .row-n to get a specific row by its index number.

• With a list, we can use get to get an item.
• So…

• Get a random number. Then,
• Get list element(item) positioned at that number

Adding randomness to our code

9/27/2022 CMPU 101: Problem Solving and Abstraction 29

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == “Plural-Noun": #we want a Plural Noun!

...
else:

w
end

where:
...

end

Adding randomness to our code

9/27/2022 CMPU 101: Problem Solving and Abstraction 30

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == “Plural-Noun":
rand = num-random(3) #we have 3 items in our plural-nouns list
get(plural-nouns, rand)

else:
w

end
where:

else:
w

end
where:

...
end

Q:Do we have to know how many plural-nouns we have?

9/27/2022 CMPU 101: Problem Solving and Abstraction 31

plural-nouns = [list: "gazebos", "avocados", "umiaks", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == “Plural-Noun":
rand = num-random(3) #we have 3 items in our plural-nouns list… oops, no we don’t
get(plural-nouns, rand)

else:
w

end
where:

else:
w

end
where:

...
end

A: No, we don’t!

9/27/2022 CMPU 101: Problem Solving and Abstraction 32

plural-nouns = [list: "gazebos", "avocados", "umiaks", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"

if w == “Plural-Noun":

rand = num-random(length(plural-nouns))
get(plural-nouns, rand)

else:
w

end
where:

else:
w

end
where:

...
end

The other parts of speech (data) for our madlib

9/30/2022 CMPU 101: Problem Solving and Abstraction 33

plural-nouns =
[list: "gazebos", "avocados", “umiaks", “pandas"]

numbers =
[list: "-1", "42", "a billion"]

nouns =
[list: "apple", "computer", "borscht"]

body-parts =
[list: "elbow", "head", "spleen"]

alphabet-letters =
[list: "A", "C", "Z"]

adjectives =
[list: "funky", "boring"]

Getting the rest of the random words

9/30/2022 CMPU 101: Problem Solving and Abstraction 34

plural-nouns = [list: "gazebos", "avocados", "umiaks", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"

if w == “Plural-Noun":
rand = num-random(length(plural-nouns))

get(plural-nouns, rand)
else if w == “Numbers":

rand = etc. etc. etc.
else if w == “Nouns":

rand = etc. etc. etc.

end
where:

else:
w

end
where:

...
end

Getting the rest of the random words

10/2/2022 CMPU 101: Problem Solving and Abstraction 35

plural-nouns = [list: "gazebos", "avocados", "umiaks", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"

if w == “Plural-Noun":
rand = num-random(length(plural-nouns))

get(plural-nouns, rand)
else if w == “numbers":

rand = etc. etc. etc.
else if w == “nouns":

rand = etc. etc. etc.

end
where:

else:
w

end
where:

...
end

Generalizing the call to num-random

10/2/2022 CMPU 101: Problem Solving and Abstraction 36

#address need for general utility that gives us a random word.

fun rand-word(l :: List<String>) -> String:

doc: "Return a random word in the given list"

rand = num-random(length(l))

get(l, rand)

where:

member(plural-nouns, rand-word(plural-nouns))

is true

end

Completing the helper function…

10/2/2022 CMPU 101: Problem Solving and Abstraction 37

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":

rand-word(plural-nouns)
else if w == "Number":

rand-word(numbers)
else if w == "Noun":
rand-word(nouns)

else if w == "Body-Part":
rand-word(body-parts)

else if w == "Alphabet-Letter":
rand-word(alphabet-letters)

else if w == "Adjective":
rand-word(adjectives)

else:
w

end
end

Back to our task plan

• We’ve completed our helper,

• Now we need to run it on every word in the list, the same way

• transform-column

• runs a function on every row of a table.

10/2/2022 CMPU 101: Problem Solving and Abstraction 38

Back to our task plan

• We’ve completed our helper, substitute-word!

• Now we need to run it on every word in the list, the same way

• transform-column

• runs a function on every row of a table.

• This is the way: map

10/2/2022 CMPU 101: Problem Solving and Abstraction 39

Mad-libs so far…

fun mad-libs(t :: List<String>) -> String:
doc: "Randomly fill in the blanks in the mad libs template"

map(substitute-word, t) #like transform-column

end

10/2/2022 CMPU 101: Problem Solving and Abstraction 40

Mad-libs so far… actually…

fun mad-libs(t :: List<String>) -> String:
doc: “Actually… This only returns a list of strings "

map(substitute-word, t) #like transform-column

end

10/2/2022 CMPU 101: Problem Solving and Abstraction 41

… to the string documentation!

10/2/2022 CMPU 101: Problem Solving and Abstraction 42

https://www.pyret.org/docs/latest/lists.html(part._lists_join-str)

Mad-libs: final version

fun mad-libs(t :: List<String>) -> String:

doc: "Randomly fill in the blanks in the mad libs template"

map(substitute-word, t) used on next line.

with-subs = map(substitute-word, t)

join-str(with-subs, " ")

end

10/2/2022 CMPU 101: Problem Solving and Abstraction 43

Link to code

• https://code.pyret.org/editor#share=1gNCCr9cAxOFqewY3Wx221gSqV-
JQho5n&v=31c9aaf

10/2/2022 CMPU 101: Problem Solving and Abstraction 44

Acknowledgements

9/24/2022 CMPU 101: Problem Solving and Abstraction 45

• This lecture incorporates material from:

• Kathi Fisler, Brown University,

• Jason Waterman, Vassar College

• And, Jonathan Gordon, Vassar College

