
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Lists and Recursion

One take on recursion: GNU (www.gnu.org)

9/26/2022 CMPU 101: Problem Solving and Abstraction 2

But what does GNU mean?

10/4/2022 CMPU 101: Problem Solving and Abstraction 3

But what does recursion mean?

10/4/2022 CMPU 101: Problem Solving and Abstraction 4

Recursion is a programming technique that involves defining a solution or
structure using itself as part of the definition.

We will revisit recursion again!

Back to lists columns

9/26/2022 CMPU 101: Problem Solving and Abstraction 5

Back to lists columns

10/4/2022 CMPU 101: Problem Solving and Abstraction 6

Back to lists

10/4/2022 CMPU 101: Problem Solving and Abstraction 7

In pyret… we can use get…

10/4/2022 CMPU 101: Problem Solving and Abstraction 8

Much like the rows in a table, the items in a list have (zero based)
numeric indices and be accessed via get:

In pyret… we can use get… uh oh.

10/4/2022 CMPU 101: Problem Solving and Abstraction 9

Much like the rows in a table, the items in a list have (zero based)
numeric indices and be accessed via get:

In pyret… we can use get… click run first though

10/4/2022 CMPU 101: Problem Solving and Abstraction 10

Much like the rows in a table, the items in a list have numeric (zero based) indices and
be accessed via get as long as we use context essentials2021:

List length

9/26/2022 CMPU 101: Problem Solving and Abstraction 11

List member

10/4/2022 CMPU 101: Problem Solving and Abstraction 12

Table functions analogous to List functions

10/4/2022 CMPU 101: Problem Solving and Abstraction 13

Table functions analogous to List functions

10/4/2022 CMPU 101: Problem Solving and Abstraction 14

Filter documentation

9/27/2022 CMPU 101: Problem Solving and Abstraction 15

List filter example + lambda

10/4/2022 CMPU 101: Problem Solving and Abstraction 16

Consistently inconsistent pyret functions

10/4/2022 CMPU 101: Problem Solving and Abstraction 17

DIY List functions

Consider: a list of numbers

What do we want: the sum of these numbers

How do we approach this problem?

9/27/2022 CMPU 101: Problem Solving and Abstraction 18

DIY List functions

Consider: a list of numbers

What do we want: the sum of these numbers

How do we approach this problem?

Similar to how you (hopefully) approached exam problems:

• Start with a name and write the function shell!
fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 19

DIY List functions

Next up: consider testing examples (where…)

• Btw, function “sum” already exists in pyret

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...

where:

my-sum([list:]) is ...

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 20

DIY List functions: developing test cases before code

Simplest case: an empty list!

• Similar to an empty string: “”

• Corresponds to [list:]

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...

where:

my-sum([list:]) is 0 # we could name our empty list and use its name here instead

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 21

DIY List functions: developing test cases before code

Next simplest case: one item in list

•

• Corresponds to [list: 7]

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...

where:

my-sum([list:]) is 0 # we could name our empty list and use its name here instead

my-sum([list: 7]) is 7

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 22

DIY List functions: developing test cases before code

Next simplest cases: etc.

• Corresponds to [list: 7]
fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0 # we could name our empty list and use its name here instead

my-sum([list: 7]) is 7
my-sum([list: 2, 7]) is 9
my-sum([list: 4, 2, 7]) is 4 + 2 + 7 # math is hard at 3am!

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 23

DIY List functions: establishing a pattern

Let’s rewrite all of our test case results

In terms of previous results

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...
where:
my-sum([list:]) is 0
my-sum([list: 7]) is 7
my-sum([list: 2, 7]) is 2 +7
my-sum([list: 4, 2, 7]) is 4 + 2 + 7
end

10/4/2022 CMPU 101: Problem Solving and Abstraction 24

DIY List functions: establishing a pattern

Let’s rewrite all of our test case results

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...
where:
my-sum([list:]) is 0
my-sum([list: 7]) is 7 + 0
my-sum([list: 2, 7]) is 2 + 7 + 0
my-sum([list: 4, 2, 7]) is 4 + 2 + 7 + 0

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 25

DIY List functions: establishing a pattern

Let’s rewrite all of our test case results

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...
where:
my-sum([list:]) is 0
my-sum([list: 7]) is 7 + my-sum([list:])
my-sum([list: 2, 7]) is 2 + my-sum([list: 7])
my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 26

Before we continue,

We should take a look at:

The Secret Nature of Lists!:

10/4/2022 CMPU 101: Problem Solving and Abstraction 27

Shorthand list notation

[list: 3, 1, 4] is a lie

10/4/2022 CMPU 101: Problem Solving and Abstraction 28

List notation in pyret

•Pyret’s a priori assumption about lists:

•There are two ways of making a list.

•A list is one of either:
• empty

• link(⟨item⟩, ⟨list⟩) # link() will join an item & existing list into a new list.

10/4/2022 CMPU 101: Problem Solving and Abstraction 29

Implementation of a list

10/4/2022 CMPU 101: Problem Solving and Abstraction 30

• A list of one item, e.g.,

• [list: "A"],

• is really a link between an item and the empty list:

• link("A", empty)

Implementation of a list

10/4/2022 CMPU 101: Problem Solving and Abstraction 31

• And so on…

• [list: "Z", "A"],

• is really a link between an item and the list with one item
which itself is a link with one item and the empty list:

• link("Z", (link("A", empty)))

Implementation of a list

10/4/2022 CMPU 101: Problem Solving and Abstraction 32

• And so on…

• [list: "Z", "A"],

• is really a link between an item and the list with one item
which itself is a link with one item and the empty list:

• link("Z", (link("A", empty)))

• We now return to our regularly scheduled lecture

From earlier… without the garish colors

Let’s rewrite all of our test case results

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

...
where:
my-sum([list:]) is 0
my-sum([list: 7]) is 7 + my-sum([list:])
my-sum([list: 2, 7]) is 2 + my-sum([list: 7])
my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 34

Writing the my-sum function

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

#thinking recursively…
where:
my-sum([list:]) is 0
my-sum([list: 7]) is 7 + my-sum([list:])
my-sum([list: 2, 7]) is 2 + my-sum([list: 7])
my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 35

Writing the my-sum function, recursively (1)

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

our base “case” is when our list is empty: ([list:]) is 0

the next case is when our list is NOT empty

where:

my-sum([list:]) is 0

my-sum([list: 7]) is 7 + my-sum([list:])

my-sum([list: 2, 7]) is 2 + my-sum([list: 7])

my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 36

We’ll refer to this as The Base Case

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

cases (List) lst: | empty => # the answer when list is empty!

0
the next case

where:

my-sum([list:]) is 0

my-sum([list: 7]) is 7 + my-sum([list:])

my-sum([list: 2, 7]) is 2 + my-sum([list: 7])

my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 37

We’ll refer to this as The Recursive Case

fun my-sum(lst :: List<Number>) -> Number:

doc: "Return the sum of the numbers in the list"

cases (List) lst: | empty => 0

| link(f, r) => f + my-sum(r) # covers all the other tests in where

end

where:

my-sum([list:]) is 0

my-sum([list: 7]) is 7 + my-sum([list:])

my-sum([list: 2, 7]) is 2 + my-sum([list: 7])

my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

end

10/4/2022 CMPU 101: Problem Solving and Abstraction 38

How does this function get evaluated?

10/4/2022 CMPU 101: Problem Solving and Abstraction 39

When is a recursive solution appropriate?

9/27/2022 CMPU 101: Problem Solving and Abstraction 40

Any time a problem is structured such that
• the solution on larger inputs can be built from

the solution on smaller inputs, then
• recursion is appropriate.

The two cases we need to solve

9/27/2022 CMPU 101: Problem Solving and Abstraction 41

All recursive functions have these two parts:
Base case(s):

What’s the simplest case to solve?
Recursive case(s):

What’s the relationship between the current case and the answer to a slightly
smaller case?
You should be calling the function you’re defining here; this is referred to as a
recursive call.
Each time you make a recursive call, you must make the input smaller.

Otherwise, we would have a “GNU” case (i.e. endless recursion)!
If your input is a list, you do this by passing the rest of the list to the recursive call.

Splitting up a list recursively: First and Rest

9/27/2022 CMPU 101: Problem Solving and Abstraction 42

First/Rest in my-sum

9/27/2022 CMPU 101: Problem Solving and Abstraction 43

link(f, r) => f + my-sum(r)

• first of the list is… f

• rest of the list is… my-sum(r)

What if…

10/4/2022 CMPU 101: Problem Solving and Abstraction 44

… we made a recursive call on the original input list?

link(f, r) => f + my-sum(lst)

• first of the list is… f

• rest of the list is… my-sum(lst)

Let’s try writing another recursive function

10/4/2022 CMPU 101: Problem Solving and Abstraction 45

Given: a list of numbers…

The function any-below-10 should return true if any

member of the list is less than 10 and false

otherwise.

Writing any-below-10

10/4/2022 CMPU 101: Problem Solving and Abstraction 46

#Start with the test cases first!
fun any-below-10(lst :: List<Number>) -> Boolean:

doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
any-below-10([list: 4]) is (4 < 10)
any-below-10([list:]) is ...

end

Writing any-below-10: base case test case

10/4/2022 CMPU 101: Problem Solving and Abstraction 47

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
any-below-10([list: 4]) is (4 < 10)
any-below-10([list:]) is false

end

Writing any-below-10: rewrite the recursive tests

10/4/2022 CMPU 101: Problem Solving and Abstraction 48

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
any-below-10([list:]) is false
end

Writing any-below-10: lastly, the function itself

10/4/2022 CMPU 101: Problem Solving and Abstraction 49

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10"
cases (List) lst:
| empty => false
| link(f, r) => (f < 10) or any-below-10(r)

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
any-below-10([list:]) is false
end

Writing a Recursive Predicate

10/4/2022 CMPU 101: Problem Solving and Abstraction 50

• Now that we’ve seen how to write any-below-10, we can use the
same pattern to implement a higher-order function where we can ask
if any item in a list satisfies some predicate.
• “Some predicate”: meaning some kind of “generalized or, helper, function”

Writing my-any

9/27/2022 CMPU 101: Problem Solving and Abstraction 51

fun my-any(fn :: Function, lst :: List) -> Boolean:
doc: "Return true if the function fn is true for any item in

the given list."
cases (List) lst:

| empty => false
| link(f, r) => fn(f) or my-any(fn, r)

end
end

Writing my-all

10/4/2022 CMPU 101: Problem Solving and Abstraction 52

fun my-all(fn :: Function, lst :: List) -> Boolean:
doc: "Return true if the function fn is true for every item

in the given list."
cases (List) lst:

| empty => true
| link(f, r) => fn(f) and my-all(fn, rst)

end
end

Let’s try some practice examples together

9/30/2022 CMPU 101: Problem Solving and Abstraction 53

BTW This stuff can be adjective!

adjectives =

[list: “difficult", “funky"]

fun list-len(lst :: List) -> Number:
doc: "Compute the length of a list"
cases (List) lst:

| empty => 0
| link(f, r) => 1 + list-len(____)

end
end

Practice Makes _____

fun list-len(lst :: List) -> Number:
doc: "Compute the length of a list"
cases (List) lst:

| empty => 0
| link(f, r) => 1 + list-len(r)

end
end

Practice Makes Perfect

fun list-product(lst :: List<Number>) ->
Number:

doc: "Compute the product of all the
numbers in lst"

cases (List) lst:
| empty => 1
| link(f, r) => ____ * list-product(r)

end
end

Practice Makes _____

fun list-product(lst :: List<Number>) ->
Number:

doc: "Compute the product of all the
numbers in lst"

cases (List) lst:
| empty => 1
| link(f, r) => f * list-product(r)

end
end

Practice Makes Perfect

fun is-member(lst :: List, item) -> Boolean:
doc: "Return true if item is a member of lst"
cases (List) lst:

| empty => ______
| link(f, r) =>

(f == ______) or (is-member(______, ______)
end

end

Practice Makes ______

fun is-member(lst :: List, item) -> Boolean:
doc: "Return true if item is a member of lst"
cases (List) lst:

| empty => false
| link(f, r) =>

(f == item) or (is-member(r, item)
end

end

Practice Makes Perfect

Link to code

• https://code.pyret.org/editor#share=11g-
ulsJlopYJlZUctfv9wIpDN9rTIVFW&v=31c9aaf

10/2/2022 CMPU 101: Problem Solving and Abstraction 60

https://code.pyret.org/editor#share=11g-ulsJlopYJlZUctfv9wIpDN9rTIVFW&v=31c9aaf

Acknowledgements

9/24/2022 CMPU 101: Problem Solving and Abstraction 61

• This lecture incorporates material from:

• Kathi Fisler, Brown University,

• Marc Smith, Vassar College

• And, Jonathan Gordon, Vassar College

