Lists and Recursion

CMPU 101 — Problem Solving and Abstraction

Peter Lemieszewski

One take on recursion: GNU (www.gnu.org)
GNU Operating System Q

Supported by the Free Software Foundation

ABOUT GNU PHILOSOPHY LICENSES EDUCATION SOFTWARE DISTROS DOCS MALWARE HELP GNU

GNU Software

GNU is an operating system which is 100% free software. It was launched in 1983 by Richard Stallman (rms) and

has been developed by many people working together for the sake of freedom of all software users to control their

GNU package list
computing. Technically, GNU is generally like Unix. But unlike Unix, GNU gives its users freedom.

Basic info on GNU packages

The GNU system contains all of the official GNU software packages (which are listed below), and also includes
non-GNU free software, notably TeX and the X Window System. Also, the GNU system is not a single static set of

programs; users and distributors may select different packages according to their needs and desires. The result is still

Brief overview of GNU packages

GNU manuals

a variant of the GNU system. Wholly free GNU/Linux distributions

GNU/Linux distributions

If you're looking for a whole system to install, see our list of GNU/Linux distributions which are entirely free

software. Development resources

Get help
To look for individual free software packages, both GNU and non-GNU, please see the Free Software Directory: a

categorized, searchable database of free software. The Directory is actively maintained by the Free Software
Foundation and includes links to program home pages where available, as well as entries for all GNU packages. Another list of all GNU packages is below. Free

9/26/2022 CMPU 101: Problem Solving and Abstraction

But what does GNU mean?

What does the G in GNU stand for?

GNU's not Unix

GNU (pronounced as two syllables with a hard g, "ga new") is a recursive acronym standing for "GNU's
not Unix". The first goal of the project, initiated for the Free Software Foundation by Richard Staliman,

was to produce a fully functional Unix-compatible operating system completely free of copyrighted code.
Jun 18, 2019

10/4/2022 CMPU 101: Problem Solving and Abstraction

But what does recursion mean? @

Recursion is a programming technique that involves defining a solution or
structure using itself as part of the definition.

We will revisit recursion again!

10/4/2022 CMPU 101: Problem Solving and Abstraction 4

Back to lists columns

Columns In a table can contain a mix of
different data types, e.g.,

grades
: 98
: 56
. 74
: "F"
: "A"
: "B"

And so can a list:
[: 98’ 56’ 74’ HFII’ HAII’ IIBII]

9/26/2022 CMPU 101: Problem Solving and Abstraction

Back to lists columns

However, we usually find it easier to work with
a column where every value is of the same

Kind.

We can annotate the type of data in the column

when we make a table: ,
: col :: String

col :: Number L Hgn
. | L npy
2 L

'3

10/4/2022 CMPU 101: Problem Solving and Abstraction

Back to lists

As we saw with
string—-jolin & string-split

functions, we’ll most often have just one type of
data in a list, and we can show that when we
write the type annotation for a function:

For example,

[list: 1, 2, 3] List<Number>
“list of numbers”

[list: "a", "b", "c"] List<String>
“list of strings”

10/4/2022 CMPU 101: Problem Solving and Abstraction

In pyret... we can use get...

Much like the rows in a table, the items in a list have (zero based)
numeric indices and be accessed via get:

10/4/2022 CMPU 101: Problem Solving and Abstraction

In pyret... we can use get... uh oh.

Much like the rows in a table, the items in a list have (zero based)
numeric indices and be accessed via get:

v k v View v File Insert

use context essentials2021

Stop

m lst = [list: "a", "b", "c"

»m get(lst,1)

The identifier & is unbound:

It is used but not previously defined.

P22

10/4/2022 CMPU 101: Problem Solving and Abstraction 9

In pyret... we can use get... click first though

Much like the rows in a table, the items in a list have numeric (zero based) indices and
be accessed via get as long as we use context essentials2021:

v }; v View v File Insert “'

1
2

m st = [list: "a", "b", "c"]

»m get(lst, 0)

"a"

m

10/4/2022 CMPU 101: Problem Solving and Abstraction

&

Stop

10

List length

’st — [: Ilall’ llbll’ "C"]

The length of a list is always one more than the
last item index:

3

9/26/2022 CMPU 101: Problem Solving and Abstraction

11

List member

ISt — [: llall’ Ilbll’ II'CII]

To check if an item is in a list, we can just ask if

the list has it as a member:
member(lst, "c")

10/4/2022 CMPU 101: Problem Solving and Abstraction

12

Table functions analogous to List functions @

Tables Lists

transform-cetarmn trap

10/4/2022 CMPU 101: Problem Solving and Abstraction 13

Table functions analogous to List functions

Tables Lists
transform-column map
| -

filter-with filter

10/4/2022 CMPU 101: Problem Solving and Abstraction

14

Filter documentation

filter :: (f :: (a -> Boolean), lst :: List<a>) -> List<a>

Returns the subset of Ist for which f(elem) is true

Examples:

check:
fun length-is-one(s :: String) -> Boolean:
string-length(s) == 1
end
filter(length-is-one, [list: "ab", "a", "", "c"]) is [list: "a", "c"]
filter(is-1link, [list: empty, 1link(1, empty), empty]) is [list: link(1, empty)]
end

9/27/2022 CMPU 101: Problem Solving and Abstraction 15

List filter example + lambda

léﬁtﬂ — [: IIaII’ llbll’ "C"]

filter()
Ist) e This is an
[list: "b", "c"] anonymous (i.e.,
unnamed) function
made using a
lambda
expression.

10/4/2022 CMPU 101: Problem Solving and Abstraction

Consistently inconsistent pyret functions @

One difference to be aware of:
filter-with((fable), {(function)}

filter [(function)} dist))

CMPU 101: Problem Solving and Abstraction

DIY List functions

Consider: a list of numbers
What do we want: the sum of these numbers

How do we approach this problem?

9/27/2022 CMPU 101: Problem Solving and Abstraction

18

DIY List functions @

Consider: a list of numbers
What do we want: the sum of these numbers
How do we approach this problem?

Similar to how you (hopefully) approached exam problems:

e Start with a name and write the function shell!

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

10/4/2022 CMPU 101: Problem Solving and Abstraction 19

DIY List functions

Next up: consider testing examples (where...)

* Btw, function “sum” already exists in pyret

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([list:])

10/4/2022 CMPU 101: Problem Solving and Abstraction

20

DIY List functions: developing test cases before code @

Simplest case: an empty list!

e Similar to an empty string: “”

* Corresponds to[.]
my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([/ist:]) is O # we could name our empty list and use its name here instead

10/4/2022 CMPU 101: Problem Solving and Abstraction 21

DIY List functions: developing test cases before code @

Next simplest case: one item in list

* Corresponds to[. 7]
my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([/ist:]) is O # we could name our empty list and use its name here instead

my-sum([/ist: 7]) is 7

10/4/2022 CMPU 101: Problem Solving and Abstraction 22

DIY List functions: developing test cases before code @

Next simplest cases: etc.

* Corresponds to[. 7]

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([list:]) is O # we could name our empty list and use its name here instead
my-sum([list: 7]) is 7

my-sum([list: 2, 7]) s 9

my-sum([/ist: 4,2,7])is4+ 2+ 7 # mathis hard at 3am!

10/4/2022 CMPU 101: Problem Solving and Abstraction 23

DIY List functions: establishing a pattern

Let’s rewrite all of our test case results

In terms of previous results

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([
my-sum(|[
my-sum([
my-sum([

10/4/2022

:])is0

:7]) 157

:2,7]) 152 +7
:4,2,7))is4+2+7

CMPU 101: Problem Solving and Abstraction

&

24

DIY List functions: establishing a pattern @

Let’s rewrite all of our test case results

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([list:]) is O

my-sum([list: 7]) is 7+ 0
my-sum([list: 2, 7]) 2+-
my-sum([list:4,2,7])1:4+2+7+0

10/4/2022 CMPU 101: Problem Solving and Abstraction 25

DIY List functions: establishing a pattern

Let’s rewrite all of our test case results

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([/'=t:]) i< 0

IN; 7 + my-sum([<1:])
my-sum([:2,7]) 2+)
my-sum([list: 4, 2, 7]) is 4 + my-sum([:2, 7])

10/4/2022 CMPU 101: Problem Solving and Abstraction

&

26

Before we continue,

We should take a look at:

The Secret Nature of Lists!:

10/4/2022

CMPU 101: Problem Solving and Abstraction

27

Shorthand list notation

[list:3,1,4]is a lie

10/4/2022 CMPU 101: Problem Solving and Abstraction

28

List notation in pyret

*Pyret’s a priori assumption about lists:
*There are two ways of making a list.

°A list is one of either:

* empty
* link({item), (list))

10/4/2022 CMPU 101: Problem Solving and Abstraction

&

29

Implementation of a list

* A list of one item, e.g.,

° [: IIAlI]’

* is really a link between an item and the empty list:
* link("A", empty)

10/4/2022 CMPU 101: Problem Solving and Abstraction

30

Implementation of a list

e And so on...

° [: IlZII’ IIAII]’

* isreally a link between an item and the list with one item
which itself is a link with one item and the empty list:

 link("Z", (link("A", empty)))

10/4/2022 CMPU 101: Problem Solving and Abstraction

31

Implementation of a list

* And so on...

° [: “Z”’ llAll]’

* is really a link between an item and the list with one item
which itself is a link with one item and the empty list:

 link("Z", (link("A", empty)))

» link("z", (link("A", empty)))

[-List: “Z", "A"]

)

10/4/2022 CMPU 101: Problem Solving and Abstraction

32

* We now return to our regularly scheduled lecture

From earlier... without the garish colors

Let’s rewrite all of our test case results

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

my-sum([list:]) is O

my-sum([!ist: 7]) is 7 + my-sum([list:])
my-sum([!ist: 2, 7]) is 2 + my-sum([list: 7])
my-sum([/ist: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

10/4/2022 CMPU 101: Problem Solving and Abstraction

34

Writing the my-sum function

a list and think recursively.

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"
#thinking recursively...

my-sum([list:]) is O

my-sum([!ist: 7]) is 7 + my-sum([list:])
my-sum([!ist: 2, 7]) is 2 + my-sum([list: 7])
my-sum([/ist: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

10/4/2022 CMPU 101: Problem Solving and Abstraction

35

Writing the my-sum function, recursively (1) @

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"
our base “case” is when our list is empty: ([list:]) is O

the next case is when our list is NOT empty

my-sum([list:]) 15 0

7ny—sum(list: 7]) is 7 + my-sum([list:])
my-sum([list: 2, 7]) is 2 + my-sum([!ist: 7])
my-sum([list: 4, 2, 7]) is 4 + my-sum([list: 2, 7])

10/4/2022 CMPU 101: Problem Solving and Abstraction 36

We'll refer to this as The Base Case | @

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"

(List) Ist: | empty => # the answer when list is empty!
0

the next case

“my-sum([list:]) is 0)

~my-sum([5T 7]) 75 7 F my-sum([5T7]) D
my-sum([list: 2, 7]) is 2 + my-sum([!ist: 7])

\my—sum([list: 4,2,7]) s 4 + my-sum([list: 2, 7]))

10/4/2022 CMPU 101: Problem Solving and Abstraction 37

We'll refer to this as The Recursive Case @

my-sum(lst :: List<Number>) -> Number:
: "Return the sum of the numbers in the list"
. (List) Ist: | empty =>0
E | link(f, r) =>f + my-sum(r) # covers all the other tests in wherej

my-sum([/ist:]) is O
‘my-sum([list: 7]) is 7 + my-sum([list:]) A

my-sum([list: 2, 7]) is 2 + my-sum([/ist: 7])
\my—sum(: :4,2,7]) s 4+ my-sum([list: 2, 7]) ,

10/4/2022 CMPU 101: Problem Solving and Abstraction 38

How does this function get evaluated?

When we call this function, it evaluates as:

10/4/2022

my-sum(link(3, link(1, link(4, empty))))
3 + my-sum(link(1, link(4, empty)))

3 + 1+ my-sum(link(4, empty))
3+1+4+ my-sum(empty)
3+1+4+0

CMPU 101: Problem Solving and Abstraction

39

When is a recursive solution appropriate?

Any time a problem is structured such that

* the solution on larger inputs can be built from
the solution on smaller inputs, then

* recursion is appropriate.

9/27/2022 CMPU 101: Problem Solving and Abstraction

40

The two cases we need to solve @

All recursive functions have these two parts:

Base case(s):
What'’s the simplest case to solve?
Recursive case(s):
What’s the relationship between the current case and the answer to a slightly

smaller case?
You should be calling the function you’re defining here; this is referred to as a

recursive call.
Each time you make a recursive call, you must make the input smaller.
Otherwise, we would have a “GNU” case (i.e. endless recursion)!
If your input is a list, you do this by passing the rest of the list to the recursive call.

9/27/2022 CMPU 101: Problem Solving and Abstraction 41

Splitting up a list recursively: First and Rest @

»» Ist = [list: "item 1", "and", "so", "on"]
») Ist.first

"item 1"

») Ist.rest

[list: "and", "so", "on"]

9/27/2022 CMPU 101: Problem Solving and Abstraction 42

First/Rest in my-sum

link(f, r) => f + my-sum(r)
e first of the listis... f

e rest of the list is... my-sum(r)

9/27/2022

CMPU 101: Problem Solving and Abstraction

43

What if...

... we made a recursive call on the original input list?
link(f, r) =>f + my-sum(|st)
e first of the listis... f

* rest of the list is... my-sum(Ist)

10/4/2022 CMPU 101: Problem Solving and Abstraction

44

Let’s try writing another recursive function @

Given: a list of numbers...

The function any-below-10 should return If any
member of the list Is less than 10 and

otherwise.

10/4/2022 CMPU 101: Problem Solving and Abstraction 45

Writing any-below-10

#Start with the test cases first!

any-below-10(lst :: List<Number>) -> Boolean:
: "Return true if any number in the list is less than 10"

any-be
any-be
any-be

ow-10(][
ow-10(][
ow-10(]

<1231 4]) i< (3 < 10) or (1< 10) or (4 < 10)

st:1,4]) s (1<10) or (4 <10)
st:4]) is (4 <10)

J

N

any-be

ow-10(][

:])

10/4/2022

CMPU 101: Problem Solving and Abstraction

46

Writing any-below-10: base case test case

any-below-10(lst :: List<Number>) -> Boolean:

: "Return true if any number in the list is less than 10"

" any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
any-below-10([!ist: 1, 4]) is (1 < 10) or (4 < 10)

. any-below-10([!ist: 4]) is (4 < 10) Y

 any-below-10([list:]) is false)

_

10/4/2022

CMPU 101: Problem Solving and Abstraction

&

a7

Writing any-below-10: rewrite the recursive tests

any-below-10(lst :: List<Number>) -> Boolean:
: "Return true if any number in the list is less than 10"

" any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([!ist: 1, 4])"
any-below-10(][1, 4]) is (1 < 10) or any-below-10([!ist: 4])

_any-below-10([list: 4]) is (4 < 10) or any-below-10([ist:])

" any-below-10([list:]) is false

10/4/2022

CMPU 101: Problem Solving and Abstraction

(AN

&

48

Writing any-below-10: lastly, the function itself @

any-below-10(Ist :: List<Number>) -> Boolean:
: "Return true if any number in the list is less than 10"
(List) Ist:
| empty =>
| link(f, r) => (f < 10) or any-below-10(r)

any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([!ist: 1, 4])
any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([!ist: 4])
any-below-10([list: 4]) is (4 < 10) or any-below-10([!ist:])
any-below-10([list:]) is false

10/4/2022 CMPU 101: Problem Solving and Abstraction 49

Writing a Recursive Predicate @

* Now that we’ve seen how to write any-below-10, we can use the
same pattern to implement a higher-order function where we can ask
if any item in a list satisfies some predicate.

* “Some predicate”: meaning some kind of “generalized or, helper, function”

10/4/2022 CMPU 101: Problem Solving and Abstraction 50

Writing my-any @

my-any(fn :: Function, Ist :: List) -> Boolean:
: "Return true if the function fn is true for any item in
the given list."
(List) Ist:
| empty => false
| link(f, r) => fn(f) or my-any(fn, r)

9/27/2022 CMPU 101: Problem Solving and Abstraction 51

Writing my-all @

my-all(fn :: Function, Ist :: List) -> Boolean:
: "Return true if the function fn is true for every item
in the given list."
(List) Ist:
| empty => true
| link(f, r) => fn(f) my-all(fn, rst)

10/4/2022 CMPU 101: Problem Solving and Abstraction 52

Let’s try some practice examples together @

BTW This stuff can be adjective!

adjectives =
[list: “difficult”, “funky"]

9/30/2022 CMPU 101: Problem Solving and Abstraction 53

Practice Makes

list-len(lst :: List) -> Number:
: "Compute the length of a list"
(List) Ist:
| empty =>0
| link(f, r) =>1 + list-len(___)

Practice Makes Perfect

list-len(lst :: List) -> Number:
: "Compute the length of a list"
(List) Ist:
| empty =>0
| link(f, r) => 1 + list-len(r)

Practice Makes

list-product(Ist :: List<Number>) ->
Number:
: "Compute the product of all the
numbers in Ist"
(List) Ist:
| empty =>1
| link(f, r)=>___ * list-product(r)

Practice Makes Perfect

list-product(Ist :: List<Number>) ->
Number:
: "Compute the product of all the
numbers in Ist"
(List) Ist:
| empty =>1
| link(f, r) =>f * list-product(r)

Practice Makes

is-member(lst :: List, item) -> Boolean:
: "Return true if item is a member of Ist"
(List) Ist:
| empty =>
| link(f, r) =>
(f ==) or (is-member(,

Practice Makes Perfect

is-member(lst :: List, item) -> Boolean:
: "Return true if item is a member of Ist"
(List) Ist:
| empty =>
| link(f, r) =>
(f == item) or (is-member(r, item)

Link to code

* https://code.pyret.org/editorttshare=11g-
ulsJlopYJIZUctfvOwlpDNOIrTIVFW&v=31c9aaf

10/2/2022 CMPU 101: Problem Solving and Abstraction

60

https://code.pyret.org/editor#share=11g-ulsJlopYJlZUctfv9wIpDN9rTIVFW&v=31c9aaf

Acknowledgements

* This lecture incorporates material from:
 Kathi Fisler, Brown University,

* Marc Smith, Vassar College

* And, Jonathan Gordon, Vassar College

9/24/2022 CMPU 101: Problem Solving and Abstraction

61

