
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Recursion
(continued)

Picking up from last week:
When is a recursive solution appropriate?

10/8/2022 CMPU 101: Problem Solving and Abstraction 2

Any time a problem is structured such that
• the solution on larger inputs can be built from

the solution on smaller inputs, then
• recursion is appropriate.

The two cases we need to solve

10/8/2022 CMPU 101: Problem Solving and Abstraction 3

All recursive functions have these two parts:
Base case(s):

What’s the simplest case to solve?
(Usually, the “empty” or “null” or “zero” case)

Recursive case(s):
What’s the relationship between the current case and the answer to a slightly
smaller case?
You should be calling the function you’re defining here; this is referred to as a
recursive call.
Each time you make a recursive call, you must make the input smaller.

Otherwise, we would have a “GNU” case (i.e. endless recursion)!
If your input is a list, you do this by passing the rest of the list to the recursive call.

10/8/2022 CMPU 101: Problem Solving and Abstraction 4

Splitting up a list recursively: First and Rest

First/Rest in my-sum

10/8/2022 CMPU 101: Problem Solving and Abstraction 5

link(f, r) => f + my-sum(r)

• first of the list is… f

• rest of the list is… my-sum(r)

What if…

10/8/2022 CMPU 101: Problem Solving and Abstraction 6

… we made a recursive call on the original input list?

link(f, r) => f + my-sum(lst)

• first of the list is… f

• rest of the list is… my-sum(lst)

Let’s try writing another recursive function

10/8/2022 CMPU 101: Problem Solving and Abstraction 7

Given: a list of numbers…

The function any-below-10 should return true if any

member of the list is less than 10 and false

otherwise.

Writing any-below-10

10/8/2022 CMPU 101: Problem Solving and Abstraction 8

#Start with the test cases first!
fun any-below-10(lst :: List<Number>) -> Boolean:

doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
any-below-10([list: 4]) is (4 < 10)
any-below-10([list:]) is ...

end

Writing any-below-10: base case test case

10/8/2022 CMPU 101: Problem Solving and Abstraction 9

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or (1 < 10) or (4 < 10)
any-below-10([list: 1, 4]) is (1 < 10) or (4 < 10)
any-below-10([list: 4]) is (4 < 10)
any-below-10([list:]) is false

end

Writing any-below-10: rewrite the recursive tests

10/8/2022 CMPU 101: Problem Solving and Abstraction 10

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
any-below-10([list:]) is false
end

Writing any-below-10: rewrite the recursive tests

10/9/2022 CMPU 101: Problem Solving and Abstraction 11

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10"
...

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
any-below-10([list:]) is false
end

Writing any-below-10: lastly, the function itself

10/8/2022 CMPU 101: Problem Solving and Abstraction 12

fun any-below-10(lst :: List<Number>) -> Boolean:
doc: "Return true if any number in the list is less than 10, think of link as meaning detach"
cases (List) lst:
| empty => false
| link(f, r) => (f < 10) or any-below-10(r)

where:
any-below-10([list: 3, 1, 4]) is (3 < 10) or any-below-10([list: 1, 4])
any-below-10([list: 1, 4]) is (1 < 10) or any-below-10([list: 4])
any-below-10([list: 4]) is (4 < 10) or any-below-10([list:])
any-below-10([list:]) is false
end

Writing a Recursive Predicate

10/8/2022 CMPU 101: Problem Solving and Abstraction 13

• Now that we’ve seen how to write any-below-10, we can use the
same pattern to implement a higher-order function where we can ask
if any item in a list satisfies some predicate.
• “Some predicate”: meaning some kind of “generalized or, helper, function”

Writing my-any

10/8/2022 CMPU 101: Problem Solving and Abstraction 14

fun my-any(fn :: Function, lst :: List) -> Boolean:
doc: "Return true if the function fn is true for any item in the

given list."
cases (List) lst:
| empty => false
| link(f, r) => fn(f) or my-any(fn, r)

end
End
#Compare with “any-below-10”

Compare with “any-below-10”

10/9/2022 CMPU 101: Problem Solving and Abstraction 15

fun my-any(fn :: Function, lst :: List) -> Boolean:
doc: "Return true if the function fn is true for any item in the

given list."
cases (List) lst:
| empty => false
| link(f, r) => fn(f) or my-any(fn, r)

end
End
#Compare with “any-below-10”

Writing my-all

10/9/2022 CMPU 101: Problem Solving and Abstraction 16

fun my-all(fn :: Function, lst :: List) -> Boolean:
doc: "Return true if the function fn is true for every item

in the given list."
cases (List) lst:

| empty => true
| link(f, r) => fn(f) and my-all(fn, rst)

end
end

Let’s try some practice examples together

10/8/2022 CMPU 101: Problem Solving and Abstraction 17

BTW This stuff can be adjective!

adjectives =

[list: “difficult", “funky"]

fun list-len(lst :: List) -> Number:
doc: "Compute the length of a list"
cases (List) lst:

| empty => 0
| link(f, r) => 1 + list-len(____)

end
end

Practice Makes _____

fun list-len(lst :: List) -> Number:
doc: "Compute the length of a list"
cases (List) lst:

| empty => 0
| link(f, r) => 1 + list-len(r)

end
end

Practice Makes Perfect

fun list-product(lst :: List<Number>) ->
Number:

doc: "Compute the product of all the
numbers in lst"

cases (List) lst:
| empty => 1
| link(f, r) => ____ * list-product(r)

end
end

Practice Makes _____

fun list-product(lst :: List<Number>) ->
Number:

doc: "Compute the product of all the
numbers in lst"

cases (List) lst:
| empty => 1
| link(f, r) => f * list-product(r)

end
end

Practice Makes Perfect

fun is-member(lst :: List, item) -> Boolean:
doc: "Return true if item is a member of lst"
cases (List) lst:

| empty => ______
| link(f, r) =>

(f == ______) or (is-member(______, ______)
end

end

Practice Makes ______

fun is-member(lst :: List, item) -> Boolean:
doc: "Return true if item is a member of lst"
cases (List) lst:

| empty => false
| link(f, r) =>

(f == item) or (is-member(r, item)
end

end

Practice Makes Perfect

Next up: fn that adds 1 to every number in a list.

fun add-1-all(lst :: List<Number>) -> List<Number>:
doc: "Add one to every number in the list"
...

where: #are all of the tests??!?

end

10/9/2022 CMPU 101: Problem Solving and Abstraction 24

add 1 to every number in a list: test cases

fun add-1-all(lst :: List<Number>) -> List<Number>:
doc: "Add one to every number in the list"
...

where:
add-1-all([list: 3, 1, 4])

is [list: 4, 2, 5]
add-1-all([list: 1, 4])
is [list: 2, 5]

add-1-all([list: 4])
is [list: 5]

add-1-all([list:]) is [list:]

end

10/9/2022 CMPU 101: Problem Solving and Abstraction 25

add 1 to every number in a list: alternate format

fun add-1-all(lst :: List<Number>) -> List<Number>:
doc: "Add one to every number in the list"
...

where:
add-1-all(link(3, link(1, link(4, empty))))

is link(4, link(2, link(5, empty)))

add-1-all(link(1, link(4, empty)))

is link(2, link(5, empty))

add-1-all(link(4, empty))

is link(5, empty)

add-1-all(empty) is empty

end

10/9/2022 CMPU 101: Problem Solving and Abstraction 26

add 1 to every number in a list: mod’ed test cases

fun add-1-all(lst :: List<Number>) -> List<Number>:
doc: "Add one to every number in the list"
...

where:
add-1-all([list: 3, 1, 4])

is link(4, add-1-all([list: 1, 4]))

add-1-all([list: 1, 4])

is link(2, add-1-all([list: 4]))

add-1-all([list: 4])

is link(5, add-1-all([list:]))

add-1-all([list:]) is [list:]

end

10/9/2022 CMPU 101: Problem Solving and Abstraction 27

add 1 to every number in a list: code

fun add-1-all(lst :: List<Number>) -> List<Number>:
doc: "Add one to every number in the list"
cases (List) lst:
| empty => empty
| link(f, r) => link(f + 1, add-1-all(r))

end

where:
add-1-all([list: 3, 1, 4])

is link(4, add-1-all([list: 1, 4]))
add-1-all([list: 1, 4])
is link(2, add-1-all([list: 4]))

add-1-all([list: 4])
is link(5, add-1-all([list:]))

add-1-all([list:]) is [list:]

end

10/9/2022 CMPU 101: Problem Solving and Abstraction 28

diff

10/9/2022 CMPU 101: Problem Solving and Abstraction 29

add 1 to every number in a list: code

fun add-1-all(lst :: List<Number>) -> List<Number>:
doc: "Add one to every number in the list"
cases (List) lst:
| empty => empty
| link(f, r) => link(f + 1, add-1-all(r))

end

where:
add-1-all([list: 3, 1, 4])

is link(4, add-1-all([list: 1, 4]))
add-1-all([list: 1, 4])
is link(2, add-1-all([list: 4]))

add-1-all([list: 4])
is link(5, add-1-all([list:]))

add-1-all([list:]) is [list:]

end

10/9/2022 CMPU 101: Problem Solving and Abstraction 30

The map function we’ve used works identically, except that it
takes a function and applies this function,
instead of simply adding 1 to every item in the list.

my-map function:

10/9/2022 CMPU 101: Problem Solving and Abstraction 31

Pattern

• We’ve seen examples of recursive functions and
• Made them generic by introducing a predicate (function)

• Let’s do the same by developing functions:
• pos-nums that returns/selects only positive numbers from a list of numbers.

• A specific recursive function that we can generalize as…

• filter that returns a list of items where some predicate returns true
• Essentially a “my-filter” recursive function

10/9/2022 CMPU 101: Problem Solving and Abstraction 32

pos-nums

10/9/2022 CMPU 101: Problem Solving and Abstraction 33

fun pos-nums(lst :: List<Number>) -> List<Number>:
doc: "Select the positive numbers from lst"
cases (List) lst:
| empty => empty
| link(n, rst) =>

if n > 0:
link(n, pos-nums(rst))

else:
pos-nums(rst)

end
end

where:
pos-nums([list:]) is [list:]
pos-nums([list: 1]) is [list: 1]
pos-nums([list: -1]) is [list:]
pos-nums([list: 1, -2]) is [list: 1]
pos-nums([list: -1, 2]) is [list: 2]
pos-nums([list: 1, -2, -3, -4]) is [list: 1]
pos-nums([list: -1, 2, -3, -4]) is [list: 2]
pos-nums([list: 1, -2, 3, 4]) is [list: 1, 3, 4]

end

My-filter: with generic predicate (1)

10/9/2022 CMPU 101: Problem Solving and Abstraction 34

fun my-filter(predicate :: Function, lst :: List<Number>) -> List<Number>:
doc: "Filter a list to only items where predicate returns true"
cases (List) lst:

| empty => empty
| link(f, r) =>

if predicate(f):
link(f, my-filter(predicate, r))

else:
my-filter(predicate, r)

end
end

where:
we can define the predicate in our test case. Let’s replicate pos-nums functionality

end

My-filter: with generic predicate (2)

10/9/2022 CMPU 101: Problem Solving and Abstraction 35

fun my-filter(predicate :: Function, lst :: List<Number>) -> List<Number>:
doc: "Filter a list to only items where predicate returns true"
cases (List) lst:

| empty => empty
| link(f, r) =>

if predicate(f):
link(f, my-filter(predicate, r))

else:
my-filter(predicate, r)

end
end

where:
we can define the predicate in our test case. Let’s replicate pos-nums functionality
we can use lambda for this purpose too: format: lam(x): ??? end

end

My-filter: with generic predicate (3)

10/9/2022 CMPU 101: Problem Solving and Abstraction 36

fun my-filter(predicate :: Function, lst :: List<Number>) -> List<Number>:
doc: "Filter a list to only items where predicate returns true"
cases (List) lst:

| empty => empty
| link(f, r) =>

if predicate(f):
link(f, my-filter(predicate, r))

else:
my-filter(predicate, r)

end
end

where:
my-filter(lam(x): x > 0 end, [list: 1, -2, 3, 4]) is [list: 1, 3, 4]

end

Even more generic: The List Aggregation Pattern

10/9/2022 CMPU 101: Problem Solving and Abstraction 37

fun ⟨function-name⟩(⟨arguments, incl. lst⟩) -> ⟨return type⟩:

cases (List) lst:

| empty => ⟨empty case⟩

| link(f, r) =>

⟨some processing on f⟩

⟨combined with⟩

function-name(r)

end

end

Writing your own recursive list functions

• Here are the procedures for writing your list functions:

1. Write the name, inputs, input types, & output type for the function.

2. Write some examples of what the function should produce and should cover all
structural cases:
a. i.e., empty vs non-empty lists

b. as well as interesting scenarios within the problem.

3. Write out the list aggregation template

4. Implement the function so that it handles the examples correctly

10/9/2022 CMPU 101: Problem Solving and Abstraction 38

Writing your own recursive list functions

• Here are the procedures for writing your list functions:

1. Write the name, inputs, input types, & output type for the function.

2. Write some examples of what the function should produce and should cover all
structural cases:
a. i.e., empty vs non-empty lists

b. as well as interesting scenarios within the problem.

3. Write out the list aggregation template

4. Implement the function so that it handles the examples correctly

One final recommendation: Don’t skip steps!

10/9/2022 CMPU 101: Problem Solving and Abstraction 39

Link to code

• pos-nums

• add-1-all

• my-filter

• And, lecture 11 code (any-below-10, any-in-list, all-in-list)

10/8/2022 CMPU 101: Problem Solving and Abstraction 40

https://code.pyret.org/editor#share=14kwmrRAMbQD11lpxA1OiEqHzbn_KUKNZ&v=31c9aaf
https://code.pyret.org/editor#share=1KYWRdJnxu7eruA7Vrcrwz8gk2mNz1OAx&v=31c9aaf
https://code.pyret.org/editor#share=1dhIrulgntbAU0-mZ2RCwz9TIr_3tFOge&v=31c9aaf
https://code.pyret.org/editor#share=10lniuu-jF4AzN8IqrHTW2tgcFedxjoFv&v=31c9aaf

Acknowledgements

10/8/2022 CMPU 101: Problem Solving and Abstraction 41

• This lecture incorporates material from:

• Kathi Fisler, Brown University,

• Marc Smith, Vassar College

• And, Jonathan Gordon, Vassar College

