
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Designing new data types
(structures)

Data Types

• We’ve seen: Basic/Simple
• Boolean
• Number
• String

• And: More Complex
• Image
• Table
• List

• These data types may not be enough to suite our needs…
• we must create them ourselves
• These are called structures (struct data type in C, and similar to class in C++, Java)

10/24/2022 CMPU 101: Problem Solving and Abstraction 2

Presented for your consideration

• We’re doing a study on communication patterns among students.

• We don’t have the messages the students sent,

• We do have the metadata for each message:
• sender

• recipient

• day of the week

• time (hour and minute)

Definition*: metadata is data that provides information about other data.

• *according to wikipedia

• A data type is one example

10/24/2022 CMPU 101: Problem Solving and Abstraction 3

Text/Phone Call Metadata

• The NSA collects this metadata
• For “national security” purposes

• See John Bohannon, “Your call and text records are far more revealing than
you think”, Science, 2016

10/24/2022 CMPU 101: Problem Solving and Abstraction 4

https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think

How Should We Assemble Text Metdata?

• The data suggests… a table!

10/24/2022 CMPU 101: Problem Solving and Abstraction 5

How Should We Represent Time data

• A string?

10/24/2022 CMPU 101: Problem Solving and Abstraction 6

How Should We Represent Time data

• A number, like the number of minutes since midnight?

10/24/2022 CMPU 101: Problem Solving and Abstraction 7

How Should We Represent Time data

• A list?
• Lists tend to be unbounded

• Time requires exactly 2 entries

10/24/2022 CMPU 101: Problem Solving and Abstraction 8

How Should We Represent Time data

• A list?
• The time is in one column, easy to read/access

• Lists tend to be unbounded…

• Whilst time requires exactly 2 entries

10/24/2022 CMPU 101: Problem Solving and Abstraction 9

How Should We Represent Time data

• A separate column
• For hours and minutes?

• We can access each number by name (!)

10/24/2022 CMPU 101: Problem Solving and Abstraction 10

How GNU represents time data

• For C/C++, via GNU manual

10/24/2022 CMPU 101: Problem Solving and Abstraction 11

https://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_node/libc_418.html

Our Time Structure

•Provides both:

• Easy access aspect of a list along with…

• Individual names provided by separate columns

data Time:

| time(hours :: Number, mins :: Number)

end

10/24/2022 CMPU 101: Problem Solving and Abstraction 12

Our Time Structure (2)

we define our own data type, named Time

data Time:

| time(hours :: Number, mins :: Number)

end

10/24/2022 CMPU 101: Problem Solving and Abstraction 13

Our Time Structure (3)

we define our own data type, named Time

data Time:

#we specify the makeup of time – a way to initialize or construct time.

#Then specify the named components of time (include the data type of each)

| time(hours :: Number, mins :: Number)

end

10/24/2022 CMPU 101: Problem Solving and Abstraction 14

Using Our Time Structure

10/24/2022 CMPU 101: Problem Solving and Abstraction 15

• #After defining the data type,

data Time:
| time(hours :: Number, mins :: Number)

end
#we can call time to create an instance of Time (note: Capital T!) along with initial values,

››› noon = time(12, 0)
››› half-past-three = time(3, 30)

#and we can use dot notation to access the components:

››› noon.hours
12
››› half-past.mins
30

A new representation of Metadata

• Using our new data type, Time

10/24/2022 CMPU 101: Problem Solving and Abstraction 16

Time analysis

• We can now write function to analyze our time data:
• Let’s view this in pyret…

• message-before takes a row (representing a message) and returns true if the
message was sent before the specified time.

10/24/2022 CMPU 101: Problem Solving and Abstraction 17

Building A Better(?) Calendar

• If we want to build a calendar, a collection of appointments, each of which
has a
• Date

• Start time

• Duration

• Description

10/24/2022 CMPU 101: Problem Solving and Abstraction 18

Building A Better(!) Calendar

data Date:
| date(year :: Number, month :: Number,

day :: Number)
end

data Event:
| event(date :: Date, time :: Time,

duration :: Number, descr :: String)
end

calendar :: List<Event> = ...

10/24/2022 CMPU 101: Problem Solving and Abstraction 19

To-Do List

• Let’s say a to-do item has the following data:
• Task

• Deadline

• Urgency/Priority

• For many tasks (e.g., displaying entries sorted by date), we want both
calendar events and to-do items.
• Let’s consider a “to-do” as another kind of event.

10/24/2022 CMPU 101: Problem Solving and Abstraction 20

Conditional Data Type

We can define an Event data type with multiple

constructors:

data Event:

| appt(date :: Date, time :: Time,

duration :: Number, descr :: String)

| todo(deadline :: Date, task :: String,

urgency :: String)

end

10/24/2022 CMPU 101: Problem Solving and Abstraction 21

Conditional Data Type

We can define an Event data type with multiple
constructors: one “stick key” for each condition we
want

data Event:
| appt(date :: Date, time :: Time,

duration :: Number, descr :: String)
| todo(deadline :: Date, task :: String,

urgency :: String)
end

10/24/2022 CMPU 101: Problem Solving and Abstraction 22

Our List<Event> Data type

Now a calendar can be a List<Event>,

containing both types of events, e.g.,
calendar :: List<Event> =

[list:

appt(date(2022, 10, 24), time(10, 30),

75, "CMPU 101"),

todo(date(2022, 10, 17),

“Buy Essential Snacks", "high")]

10/24/2022 CMPU 101: Problem Solving and Abstraction 23

Sherlock Holmes and the noun of the
missing plural-noun…

noun = [list: “case”]
plural-noun = [list: “cases”]

• How do we work with a list where the items can have different parts?

• We’ve already seen the way to work with different varieties of data; it’s
cases!

10/24/2022 OK, it’s not madlibs, or even a case for Sherlock Holmes… 25

Event-matches

• if we want to search our calendar for all events related to a term, we could
write a function event-matches.

• Let’s go to the pyret IDE.

10/24/2022 OK, it’s not madlibs, or even a case for Sherlock Holmes… 26

Event-matches

And we can use it to filter our calendar:

fun search-calendar(cal :: List<Event>,

term :: String) -> List<Event>:

doc: "Return just the calendar events that contain the term"

filter(

lam(e): event-matches(e, term) end,

cal)

end

10/24/2022 OK, it’s not madlibs, or even a case for Sherlock Holmes… 27

A word about functions…

The input parameters here are generic

They do not correspond to any existing event list or term!
fun search-calendar(cal :: List<Event>,

term :: String) -> List<Event>:
doc: "Return just the calendar events that contain the term"
filter(
lam(e): event-matches(e, term) end,
cal)

end

10/24/2022 OK, it’s not madlibs, or even a case for Sherlock Holmes… 28

Debrief: lists and recursion

• A list is just a built-in kind of conditional data!

• We use cases to tell apart its two possibilities – empty or link.

10/24/2022 CMPU 101: Problem Solving and Abstraction 29

Debrief: lists and recursion

data MyList:
| my-empty
| my-link(first, rest :: MyList)

end

10/24/2022 30

What's different here?
1. We have a case that's just a special keyword rather than a constructor.
2. Part of the second case” is of the same type we're defining.

CMPU 101: Problem Solving and Abstraction

Debrief: lists and recursion

data MyList:
| my-empty
| my-link(first, rest :: MyList)

end

10/24/2022 31

What's different here?
1. We have a case that's just a special keyword rather than a constructor.
2. Part of the second case” is of the same type we're defining.

• A recursive definition!

CMPU 101: Problem Solving and Abstraction

Debrief: lists and recursion

data MyList:
| my-empty
| my-link(first, rest :: MyList)

end

10/24/2022 32

What's different here?
1. We have a case that's just a special keyword rather than a constructor.
2. Part of the second case” is of the same type we're defining.

• A recursive definition!

CMPU 101: Problem Solving and Abstraction

Using my-list template

And just like we did for a List, we use this template to write a function that recursively
processes the data:

fun my-list-fun(ml :: MyList) -> ...:
doc: "Template for a fn that takes a MyList"
cases (MyList) ml:

| my-empty => ...
| my-link(f, r) =>
... f ...
... my-list-fun(r) …

end
where:

my-list-fun(...) is ...
end

10/24/2022 CMPU 101: Problem Solving and Abstraction 33

Steps to write a generic template

• Given a (recursive) data definition, you write a generic template by:
1. Creating a function header,

2. Using cases to break the data input into its variants,
• In each case, list each of the fields as part of the answer

3. Calling the function itself on any recursive fields.

10/24/2022 CMPU 101: Problem Solving and Abstraction 34

Link to code

• 14_new_data_types.arr

10/24/2022 CMPU 101: Problem Solving and Abstraction 35

https://code.pyret.org/editor#share=1NXQuhQtL_Y2p2egnOA1fwX9hwBcKV97j&v=22f3b65

Acknowledgements

10/24/2022 CMPU 101: Problem Solving and Abstraction 36

• This lecture incorporates material from:

• Kathi Fisler, Brown University,

• Marc Smith, Vassar College

• And, Jonathan Gordon, Vassar College

