Trees

10/24/2022

Trees

Joyce Kilmer - 1886-1918

I think that I shall never see
A poem lovely as a tree.

A tree whose hungry mouth is prest

Against the earth's sweet flowing breast;

A tree that looks at God all day,
And lifts her leafy arms to pray;

A tree that may in summer wear
A nest of robins in her hair;

Upon whose bosom snow has lain;

Who intimately lives with rain.

Poems are made by fools like me,

But only God can make a tree.

CMPU 101: Problem Solving and Abstraction

Joyce Kilmer was born on
December 6, 1886, in New
Brunswick, New Jersey. The author
of Main Street and Other

Poems (George H. Doran Company,
1917), he was killed while fighting in
World War I.

Themes

nature

plants

About Joyce Kilmer >

https://poets.org/poem/trees

Steps to write a generic template @

* Given a (recursive) data definition, you write a generic template by:
1. Creating a function header,

2. Using CASES to break the data input into its variants,
* In each case, list each of the fields as part of the answer
3. And, calling the function itself on any recursive fields.

10/25/2022 CMPU 101: Problem Solving and Abstraction

From Last Time: Data Template

MylList: |
| my-empty ance pefinttio™
| my-link(first, rest :: MyList) seft-re®®

10/24/2022 CMPU 101: Problem Solving and Abstraction

Debrief: lists and recursion

MyList: my - et
| my-empty .k (1
_1ink (Lo
| my-link(first, rest :: MyList) my mt/lfl'l“k (2
myflink(3'

my—empty)))

What's different here?
1. We have a case that's just a special keyword rather than a constructor.

2. Part of the second case” is of the same type we're defining.
* Arecursive definition!

10/25/2022 CMPU 101: Problem Solving and Abstraction

Using my-list Data Template

We use this template to write a function that recursively processes the data:
my-list-fun(ml :: MyList) -> ...:
: "Template for a fn that takes a MyList"
(MyList) ml:

| my-empty => ...

| my-link(f, r) =>
o

... my-list-fun(r) ...

my-list-fun(...)

10/24/2022 CMPU 101: Problem Solving and Abstraction

Tracking rumors

* Suppose we want to track gossip in a rumor mill.

You'd think people had better things 'lo@

about. Three Dementor attacks in &'Week, and all
Romilda Vane doés is ask me if if's true yoU've

» gota Hippogrifi iattooed across your chest.

.

w

3
A

a
Y

:

|
|

:

’
|

| told herit's a Hungarian Horntail.

Much more macho.

ThanksJARd what did you'gelliher Ron’s got?

» APygmy Puff, but | didn’t Say where

Ginny controls the rumor mill

<+

i

Tracking rumors

* Suppose we want to track gossip in a rumor mill.

Tracking rumors

* Suppose we want to track gossip in a rumor mill.

Tracking rumors

* Suppose we want to track gossip in a rumor mill.

Tracking rumors

* Suppose we want to track gossip in a rumor mill.

Tracking rumors

* Suppose we want to track gossip in a rumor mill.

Tracking rumors @

* Suppose we want to track gossip in a rumor mill.

Simplifying
assumption: Each
person tells at most
two others

Tracking rumors @

* Suppose we want to track gossip in a rumor mill.

Simplifying
assumption: Each
person tells at most
two others

Tracking rumors

* If you ignore my silly Harry Potter example, this is a
pretty serious problem.

* A lot of research right now is focused on building
models of how information — and misinformation!
— spreads through social networks, both in person
and online.

Representing rumor mills

Vincent

Is @ rumor mill simply a list of people?

Representing rumor mills

Vincent

Question: Is a rumor mill simply a list of people?

Answer: No, because there are
relationships among the people.

Representing rumor mills

We could represent these

relations with a table, e.g.,

v
N\ L

Romilda

Vincent

name :: String

nextl :: String

next2 :: String

"Pansy"

|IChO|I

"Draco"

IIChOII

Representing rumor mills

Vincent

Using a table doesn’t give us any straightforward
way to process the rumor mill.

Could we use something like a list but
representing the relations?

Representing rumor mills

Vincent

Person:
| person(name :: String, next1 :: Person, next2 :: Person)

How about this?

Representing rumor mills @

Vincent

some people don’t gossip to an

arrows above.

yone else — see the red

Person:
| person(name :: String, next1 :: Person, next2 :: Person)

Representing rumor mills @

Vincent

RumorMill:
| no-one
| gossip(name :: String, nextl :: RumorMill, next2 :: RumorMill)

How about this?

Example rumor mills

RumorMill:
| no-one #at the start there is... no-one in the rumor mill!
| gossip(name :: String, nextl :: RumorMill, next2 :: RumorMill)

no-one

Example rumor mills

RumorMill:
| no-one
| gossip(name :: String, nextl :: RumorMill, next2 :: RumorMill)

gossip("Ginny", no-one, no-one)

Example rumor mills

RumorMill:
| no-one
| gossip(name :: String, nextl :: RumorMill, next2 :: RumorMill)

gossip("Romilda",
no-one,
gossip("Ginny", no-one, no-one))

gossip("Pansy",
gossip("Cho", no-one, no-one)
gossip("Draco”,
gossip("Romilda",
no-one
gossip("Ginny", no-one, no-one))
gossip("Vincent", no-one, no-one)))

Vincent

Example, using names for the parts

GINNY-MILL =

gossip("Ginny", no-one, no-one)

ROMILDA-MILL =

gossip("Romilda", no-one, GINNY-MILL)

VINCENT-MILL =

gossip("Vincent", no-one, no-one)

DRACO-MILL =

gossip("Draco", ROMILDA-MILL, VINCENT-MILL)

CHO-MILL =

gossip("Cho", no-one, no-one)

PANSY-MILL =

gossip("Pansy", CHO-MILL, DRACO-MILL)

Computer Science concepts wrung from a rumor mill @

* A RumorMill is a type of structure called a tree.
e Each element in the tree is called a node.
* The first node in the tree is called the root.
* A node with no children is called a /eaf.

* Like a list, a tree is recursive: Every subtree is a
tree.

Programming with r

RumorMill;

Self-reference x 2

| no-one

| gossip(name :: String, nextl :: RumorMill, next2 :: RumorMill)

For each element, there’s not just one “next” element; there are two!

Rumor Mill Template
Programming with r

Self-reference x 2

RumorMiill:
| no-one
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

#]
fun rumor-mill-template(rm :: RumorMill) -> ...
doc: "Template for a function with a RumorMill as input”
cases (RumorMill) rm:
| no-one => ...
| gossip(name, n1, n2) =>
... hame
... rumor-mill-template(nl)
... rumor-mill-template(n2)
end
end
| #

Rumor Mill Template @

Programming with rumors
— Self-reference x 2

RumorMill;

| no-one
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

#]

fun rumor-mill-template(rm :: Rumor

doc: "Template for a function with\y RumdMill as input”
cases (RumorMill) rm:

| no-one => ... -
| gossip(name, n1, n2) => Natural recursion % 2
... hame

... rumor-mill-template(n1)

10/24/2022 CMPU 101: Problem Solving and Abstraction 31

Link to code

e 14 new data types.arr

10/24/2022

CMPU 101: Problem Solving and Abstraction

32

https://code.pyret.org/editor#share=1NXQuhQtL_Y2p2egnOA1fwX9hwBcKV97j&v=22f3b65

Acknowledgements

* This lecture incorporates material from:
 Kathi Fisler, Brown University,

* Marc Smith, Vassar College

* And, Jonathan Gordon, Vassar College

10/24/2022 CMPU 101: Problem Solving and Abstraction

33

