
Expressions, Values,  
and Names

23 January 2023

CMPU 101 § 52 · Computer Science I

Where are we?

A program (or script) instructs a computer to do
something.

These instructions must be very specific for the computer to carry
them out.

But programs also need to be understood by people, so they must be
readable!

To write a program, we need to use a programming
language and programming environment.

We write our computation in the language.

We run the program in the environment.

code.pyret.org

Definitions pane Interactions pane

https://code.pyret.org

Prompt

Use the interactions pane for:

Trying out expressions

Checking syntax

Use the definitions pane for:

Building complex expressions

Naming expressions

Using previously defined expressions

Saving your code as files!

Which pane would I use if…

I want to see if I can make a blue circle?

I want to define my-shape as a blue circle and use it later in my code?

I want to see if Pyret will accept this: print "5"?

I want to start my assignment now and finish it later?

Starting to program

We’re trying to make sense of the problem.

We start with the data before we dive in to try to
do it.

We might want to compute the heights of the
stripes from the overall flag dimensions, which
means we need to write programs over numbers.

We need a way to describe colors to our program.

We need a way to create images based on simple
shapes of different colors.

We might want to compute the heights of the
stripes from the overall flag dimensions, which
means we need to write programs over numbers.

We need a way to describe colors to our program.

We need a way to create images based on simple
shapes of different colors.

An individual number like 5 is a value – it can’t be
computed any further.

(3 + 4) * (5 + 1) is an expression – a
computation that produces an answer.

A program consists of one or more computations
you want to run.

››› num-min(5, 9)

5

We might want to compute the heights of the
stripes from the overall flag dimensions, which
means we need to write programs over numbers.

We need a way to describe colors to our program.

We need a way to create images based on simple
shapes of different colors.

Names can be given as text strings, e.g., "blue".

We might want to compute the heights of the
stripes from the overall flag dimensions, which
means we need to write programs over numbers.

We need a way to describe colors to our program.

We need a way to create images based on simple
shapes of different colors.

››› circle(50, "solid", "red")

We can manipulate images much like we can
manipulate numbers.

Numbers can be added, subtracted, etc.

Images can overlaid, rotated, flipped, etc.

Evaluation

How does something like (4 + 2) / 3 work?

What is the operator / dividing?

Shouldn’t / expect two numbers?

Even though (4 + 2) isn’t a number, it’s an
expression that evaluates to a number.

This works for all data types, not just numbers!

Operations may only work on
certain types of data!

What’s in a name?

An expression of the form

	 ⟨name⟩ = ⟨expression⟩

tells Pyret to associate the value of ⟨expression⟩
with ⟨name⟩.

Every time you type ⟨name⟩, Pyret will substitute
the value for you, e.g.,

x = 5

x + 4

will evaluate to 9.

Note there’s no output from
entering a definition.

It only has a side effect of telling
Pyret to associate the name
with the value.

To evaluate a definition,

1 Evaluate the expression and record the
resulting value as the value of the name

To evaluate a defined name,

1 Lookup the value associated with the name

Every programming language has its own
conventions for names.

In Pyret, names are lowercase with words joined by
hyphens, e.g.,

this-is-a-good-name

this_makes_bonny_cry

thisIsACrimeAgainstPyret

The following is silly, but legal:

››› five = 6

››› five 
6

››› six = 5

››› six 
5

Names are arbitrary

Several constants may have the same value:

››› seven = 7

››› seven 
7

››› sept = 7

››› sept 
7

If we define constants

width = 400

height = 600

Now if we write

width * height

it gets evaluated:

	 →	400 * height 
	 →	400 * 600 
	 →	240000

Names must be given a value
before being used.

In Pyret, names are immutable,
which means they can only be
defined once.

Exercise

xeyes

xeyes

As you build up more complex images from simpler
ones, you’re following a core idea called composition.

Programs are always built of smaller programs that do parts of the
larger task you want to perform.

We’ll use composition throughout this course.

Organizing a program with names

Let’s consider three programs that all draw this
(beautiful, nuanced) emoji:

Create the head: a yellow circle with black border

base = circle(50, "solid", "yellow")

base-border = circle(53, "solid", "black")

head = overlay(base, base-border)

Create pair of eyes, using a square as a spacer

eye = circle(9, "solid", "blue")

eye-spacer = square(12, "solid", "yellow")

one-eye-with-space = beside(eye, eye-spacer)

eyes = beside(one-eye-with-space, eye)

Add a mouth to the eyes to make a face

mouth = ellipse(30, 15, "solid", "red")

mouth-spacer = rectangle(30, 15, "solid", "yellow")

eyes-with-mouth-space = above(eyes, mouth-spacer)

face = above(eyes-with-mouth-space, mouth)

Put the face on the head

emoji = overlay-align("center", "center", face, head)

emoji

Version 1

Create the head: a yellow circle with black border

base = circle(50, "solid", "yellow")

head = overlay(base, circle(53, "solid", "black"))

Create a pair of eyes, using a square as a spacer

eye = circle(9, "solid", "blue")

eyes =

 beside(

 eye,

 beside(

 square(12, "solid", "yellow"), # eye spacer

 eye))

Add a mouth to the eyes to make a face

mouth = ellipse(30, 15, "solid", "red")

face =

 above(

 eyes,

 above(

 rectangle(30, 15, "solid", "yellow"), # mouth spacer

 mouth))

Put the face on the head

emoji = overlay-align("center", "center", face, head)

emoji

Version 2

overlay-align("center", "center",

 above(

 beside(

 circle(9, "solid", "blue"), # eye

 beside(

 square(12, "solid", "yellow"), # eye spacer

 circle(9, "solid", "blue"))), # eye

 above(

 rectangle(30, 15, "solid", "yellow"), # mouth spacer

 ellipse(30, 15, "solid", "red"))), # mouth

 overlay(circle(50, "solid", "yellow"), # base

 circle(53, "solid", "black"))) # head border

Version 3

All three programs generate the same image.

Which one seems easiest to read and understand?

Create the head: a yellow circle with black border

base = circle(50, "solid", "yellow")

base-border = circle(53, "solid", "black")

head = overlay(base, base-border)

Create pair of eyes, using a square as a spacer

eye = circle(9, "solid", "blue")

eye-spacer = square(12, "solid", "yellow")

one-eye-with-space = beside(eye, eye-spacer)

eyes = beside(one-eye-with-space, eye)

Add a mouth to the eyes to make a face

mouth = ellipse(30, 15, "solid", "red")

mouth-spacer = rectangle(30, 15, "solid", "yellow")

eyes-with-mouth-space = above(eyes, mouth-spacer)

face = above(eyes-with-mouth-space, mouth)

Put the face on the head

emoji = overlay-align("center", "center", face, head)

emoji

Version 1

overlay-align("center", "center",

 above(

 beside(

 circle(9, "solid", "blue"), # eye

 beside(

 square(12, "solid", "yellow"), # eye spacer

 circle(9, "solid", "blue"))), # eye

 above(

 rectangle(30, 15, "solid", "yellow"), # mouth spacer

 ellipse(30, 15, "solid", "red"))), # mouth

 overlay(circle(50, "solid", "yellow"), # base

 circle(53, "solid", "black"))) # head border

Version 3

Create the head: a yellow circle with black border

base = circle(50, "solid", "yellow")

head = overlay(base, circle(53, "solid", "black"))

Create a pair of eyes, using a square as a spacer

eye = circle(9, "solid", "blue")

eyes =

 beside(

 eye,

 beside(

 square(12, "solid", "yellow"), # eye spacer

 eye))

Add a mouth to the eyes to make a face

mouth = ellipse(30, 15, "solid", "red")

face =

 above(

 eyes,

 above(

 rectangle(30, 15, "solid", "yellow"), # mouth spacer

 mouth))

Put the face on the head

emoji = overlay-align("center", "center", face, head)

emoji

Version 2

Beginning programmers tend to write code more
like the first example.

As we get more involved working with structured
data, writing code like the second example will be
useful, as the structure of well written program
tends to reflect the structure of the data you are
working with.

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Jason Waterman, Vassar College

Jonathan Gordon, Vassar College

