
Evaluating Functions
and Conditionals

25 January 2023

cmpu 101 § 52 · Computer Science I

Assignment 1 comes out on Thu

Assignment 1 due 11:59pm on Wed, next week

Where are we?

We’ve been using Pyret to write expressions that
use:

Data, including

numbers (0, -10, 0.4),

strings ("", "hi", "111"), and

images (circle(2, "solid", "red")).

Which we modify or combine using operators or functions like +,
string-append, and above.

Distinguishing types of data helps to catch mistakes.

If you try to give

a string to / or

a number to overlay,

we want Pyret to catch the problem right early,
giving a helpful error message.

We’ve seen that we can create more complicated
programs by composing function calls, e.g.,

1 + (2 / 3)

or
string-append("hello ",
 string-append("Pyret ", "world!"))

And we can give a name to the result of an
expression, e.g.,

total = 2 + 3

Defining functions

Remember functions from middle-school math:

Given f(x) = cos(x) + 2

f(0) = 1 + 2 = 3
Parameter stands for
varying value

Pyret functions work the same way:
fun f(x): num-cos(x) + 2 end

 f(0)
 → num-cos(0) + 2
 → 1 + 2
 → 3

Function definitions in Pyret have this form:
fun ⟨function-name⟩ (⟨arg-name⟩, …):
 ⟨expression⟩
end

Example

Mary Berry needs to know how
many cakes to bake for her cake
shop.

To avoid running out or having too many,
she likes to bake two cakes more than the
number she sold the previous day.

E.g., if Mary sells eight cakes on Monday,
she makes ten cakes on Tuesday.

Let’s write some code to help Mary.

fun cakes-to-make(num-sold):
 num-sold + 2
end

special word to define a function

fun cakes-to-make(num-sold):
 num-sold + 2
end

name of the function

fun cakes-to-make(num-sold):
 num-sold + 2
end

parameter

fun cakes-to-make(num-sold):
 num-sold + 2
end

transform the data

fun cakes-to-make(num-sold):
 num-sold + 2
end

special word to signal the
function definition is done

Functional abstraction

Draw a traffic light
above(circle(40, "solid", "red"),
 above(circle(40, "solid", "yellow"),
 circle(40, "solid", "green"))

Unchanging Varying

Draw a traffic light
above(circle(40, "solid", "red"),
 above(circle(40, "solid", "yellow"),
 circle(40, "solid", "green")))

Can be changed to
fun bulb(color):
 circle(40, "solid", color)
end

above(bulb("red"),
 above(bulb("yellow"),
 bulb("green")))

fun bulb(color):
 circle(40, "solid", color)
end

fun traffic-light():
 above(bulb("red"),
 above(bulb("yellow"),
 bulb("green")))
end

Example

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

The price is twice the cost of the ingredients plus 1/4 of the
preparation time in minutes.

Chocolate cake
Ingredients: $10

Preparation time: 20 minutes

Cheesecake
Ingredients: $15

Preparation time: 36 minutes

choc-cake-price = (2 * 10) + (0.25 * 20)

cheesecake-price = (2 * 15) + (0.25 * 36)

choc-cake-price = (2 * 10) + (0.25 * 20)

cheesecake-price = (2 * 15) + (0.25 * 36)

We use functions to
avoid repetitive code
when we need to
perform the same
operations on different
values.

choc-cake-price = (2 * 10) + (0.25 * 20)

cheesecake-price = (2 * 15) + (0.25 * 36)

We use functions to
avoid repetitive code
when we need to
perform the same
operations on different
values.

(2 * ingredients-cost) + (0.25 * prep-time)

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (0.25 * prep-time)
end

Parameters

The parameters are the values passed into the function
that it needs to know for each operation.

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (0.25 * prep-time)
end

Expression repeated each time the function is called

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (0.25 * prep-time)
end

To calculate the price of chocolate cake or cheesecake, you
simply call your function and pass in the relevant values:

Price of chocolate cake
cake-price(10, 20)

Price of cheesecake
cake-price(15, 36)

Improving our function definitions

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number):
 (2 * ingredients-cost) + (0.25 * prep-time)
end

We specify the type of each parameter so that Pyret will check that we pass in the
right kind of values, just like for built-in operations like + and above.

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number) -> Number:
 (2 * ingredients-cost) + (0.25 * prep-time)
end

And we can specify the type of value the function returns.

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number) -> Number:
 doc: "Calculate price of cake based on
ingredient cost and prep time"
 (2 * ingredients-cost) + (0.25 * prep-time)
end

Additionally, a docstring explains what the function does.

“Programs must be written for people to read, and
only incidentally for machines to execute.”
Hal Abelson & Gerald Sussman with Julie Sussman, Structure and
Interpretation of Computer Programs, 1979

fun cakes-to-make(num-sold :: Number) -> Number:
 doc: "Compute the number of cakes to make based on
the previous number sold"
 num-sold + 2
end

fun cakes-to-make(num-sold :: Number) -> Number:
 doc: "Compute the number of cakes to make based on
the previous number sold"
 num-sold + 2
where:
 cakes-to-make(0) is 2
 cakes-to-make(107) is 109
end

fun rectangle-area(r):
 image-height(r) * image-width(r)
end

fun rectangle-area(r :: Image) -> Number:
 doc: "Return the rectangular area of the image"
 image-height(r) * image-width(r)
where:
 rectangle-area(rectangle(0, 0, "solid", "black"))
 is 0
 rectangle-area(rectangle(2, 3, "outline", "blue"))
 is 6
end

Booleans and if expressions

true
false

To combine Boolean values, we can use and:
⟨expression 1⟩ and ⟨expression 2⟩

and or:
⟨expression 1⟩ or ⟨expression 2⟩

Evaluation of and stops – is “short-circuited” – as
soon as one of the expressions being combined
evaluates to false.

Evaluation of or stops as soon as one of the
expressions evaluates to true.

››› true and false
false
››› true or false
true
››› (1 < 2) and (2 > 3)
false
››› (1 <= 0) or (1 == 1)
true

To change an expression that evaluates to true to
be false or vice versa, use not:

››› not(1 == 0)
true

i1 = rectangle(10, 20, "solid", "red")
i2 = rectangle(20, 10, "solid", "blue")

image-width(i1) < image-width(i2)

rect = rectangle(10, 20, "solid", "red")

if image-width(rect) < image-height(rect):
 "tall"
else:
 "wide"
end

To form an if expression:
if ⟨expression⟩:
 ⟨expression⟩
else:
 ⟨expression⟩
end

True–false question

True (“then”) answer

False (“else”) answer

Evaluation rule for if expressions

1 If the question expression is not a value, evaluate
it, and replace with value.

2 If the question is true, replace entire if
expression with true answer expression.

3 If the question is false, replace entire if
expression with false answer expression.

4 If the question is a value other than true or false,
so produce an error.

rect = rectangle(10, 20, "solid", "red")

if image-width(rect) < image-height(rect):
 "tall"
else:
 "wide"
end

What if, instead of producing a Boolean to say if an
image is tall or not, we classify them as “tall”, “square”,
or “wide”?

rect = rectangle(10, 20, "solid", "red")

if image-width(rect) < image-height(rect):
 "tall"
else if image-width(rect) == image-height(rect):
 "square"
else:
 "wide"
end

rect = rectangle(10, 20, "solid", "red")

fun image-type(img :: Image) -> String:
 doc: "Classify an image as tall, square, or wide"
 if image-width(img) < image-height(img):
 "tall"
 else if image-width(img) == image-height(img):
 "square"
 else:
 "wide"
 end
where:
 image-type(rect) is "tall"
end

rect = rectangle(10, 20, "solid", "red")

fun image-type(img :: Image) -> String:
 doc: "Classify an image as tall, square, or wide"
 if image-width(img) < image-height(img):
 "tall"
 else if image-width(img) == image-height(img):
 "square"
 else:
 "wide"
 end
where:
 image-type(rect) is "tall"
 image-type(rectangle(10, 10, "solid", "blue")) is "square"
 image-type(rectangle(20, 10, "solid", "blue")) is "wide"
end

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Gregor Kiczales, University of British Columbia

Jonathan Gordon, Vassar College

