
Working with Tables

1 February 2023

CMPU 101 § 52 · Computer Science I

Assignment 1

Assignment 2

Lab 2 

Due tonight

Out tomorrow

Due Friday

Where are we?

Lots of real-world data is
naturally represented as tables.

Lots of real-world data is
naturally represented as tables.

municipalities =

 table: name, kind, pop-2010, pop-2020

 row: "Adams", "Town", 5143, 4973

 row: "Adams", "Village", 1775, 1633

 row: "Addison", "Town", 2595, 2397

 row: "Addison", "Village", 1763, 1561

 row: "Afton", "Town", 2851, 2769

 ...

 end

Lots of real-world data is
naturally represented as tables.

››› municipalities

Recap: Accessing parts of a table

To get a particular row from a table, we use its
numeric index n, counting from 0:

⟨table⟩.row-n(0)

››› municipalities

››› municipalities.row-n(0)

››› municipalities

››› municipalities.row-n(1)

››› municipalities

››› municipalities.row-n(2)

To get a particular column’s value from a row, we
specify the column name using square brackets:

⟨row⟩["column name"]

››› municipalities.row-n(0)

››› municipalities.row-n(0)

››› municipalities.row-n(0)["name"]

"Adams"

››› municipalities.row-n(0)["pop-2020"]

4973

Recap: Ordering tables

To do more with tabular data, first include the
textbook library:

include shared-gdrive("dcic-2021",

 "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

We can transform tabular data to get a particular
view. E.g., to order the rows from the highest 2020
population to the lowest:

››› order-by(municipalities, "pop-2020", false)

We can transform tabular data to get a particular
view. E.g., to order the rows from the highest 2020
population to the lowest:

››› order-by(municipalities, "pop-2020", false)

lowest

highest

true

››› municipalities.row-n(0)

››› order-by(municipalities, "pop-2020", false).row-n(0)

››› municipalities.row-n(0)

››› order-by(municipalities, "pop-2020", false).row-n(0)

››› ordered = order-by(municipalities, "pop-2020", false)

››› ordered.row-n(0)

››› ordered = order-by(municipalities, "pop-2020",
false)

››› biggest = ordered.row-n(0)

››› biggest["pop-2020"]

8175133

Recap: Filtering tables

We can use filter-with to get just the towns:

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

filter-with(municipalities, is-town)

Or we could mke a table keeping only those
municipalities with a population over 10,000:

fun big-muni(r :: Row) -> Boolean:

 doc: "Return true if the municipality had over
10,000 people had in 2020"

 r["pop-2020"] > 10000

end

››› filter-with(municipalities, big-muni)

Exercise

PROBLEM Figure out what the fastest-growing towns
are in New York.

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) /

 r["pop-2010"]

end

We can write a function that takes a row as
input and returns any kind of value, not just a
Boolean.

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) /

 r["pop-2010"]

end

towns-with-percent-change =

 build-column(towns, "percent-change",

 percent-change) Name of the new column

Name of the function to use

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) /

 r["pop-2010"]

end

towns-with-percent-change =

 build-column(towns, "percent-change",

 percent-change)

fastest-growing-towns =

 order-by(towns-with-percent-change,

 "percent-change", false)

fastest-growing-towns

Review: Building a column

So, if we have this table, t,

then the result of calling build-column(t, "c", builder) is:

a b

"dog" 2

"cat" 3

a b c

"dog" 2 builder(<"dog", 2>)

"cat" 3 builder(<"cat", 3>)

For example, if we have

fun builder(r :: Row) -> Number:

 string-length(row["a"]) + row["b"]

end

Then we end up with the following table:

a b c

"dog" 2 5

"cat" 3 6

The values that the builder function returns will be
the values in the new column that we’re adding to
each row.

build-column ::

 (t :: Table,

 colname :: String,

 builder :: (Row -> A))

 -> Table

What’s this argument?

This is the second time we’ve seen a function that
takes a function as one of its inputs!

Both filter-with and build-column need a helper
function that tells them how to do what we want.

Just as a function is an abstraction over specific computations, filter-
with and build-column are abstractions over more specific functions.

They provide the common functionality and the arguments we give
provide the specifics.

Interlude: Functional programming

We can

sort the rows a table with order-with,

select certain rows using filter-with, and

add a new column of values with build-column

but none of these functions change the original
table!

Just as the expression 2 + 3 doesn’t change the
value of 2 or of 3, functions that take a table as
input don’t change the original table.

Instead, they return a new table.

This is a paradigm called functional programming.

If you have experience working in other languages, this may seem
strange, but it can be extremely useful!

We’ll explore the idea of functional programming more in the coming
weeks.

Loading Google Sheets into Pyret

We’ve seen that it’s inconvenient to type a large
table into a Pyret program. Last time, we loaded the
municipalities table from a separate Pyret file that I
prepared ahead of time.

It’s more usual to load a large data set from outside
of Pyret.

https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing

include gdrive-sheets

The ID of the Google Sheets file, which appears

in the URL

ssid = "1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs"

spreadsheet = load-spreadsheet(ssid)

A spreadsheet might have more than one sheet (the
tabs at the bottom of Google Sheets). But, in this
case, we just have one:

››› spreadsheet

spreadsheet("municipalities")

To load a table from a spreadsheet, we need to tell
Pyret which sheet to load it from and what we want
the columns to be called (which can be different
from what is in the spreadsheet):

municipalities =

 load-table:

 name, kind, pop-2010, pop-2020

 source:

 spreadsheet.sheet-by-name("municipalities",

 true)

 end

This means there’s a header row that Pyret should skip

Using our table loaded from Google Sheets, let’s
revisit our code from earlier for finding the fastest-
growing towns.

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of a
municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

towns = filter-with(municipalities, is-town)

towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

fastest-growing-towns =

 order-by(towns-with-percent-change,

 "percent-change", false)

fastest-growing-towns

Let’s take these loose
expressions and put
them in a function!

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of a
municipality between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

fun fastest-growing-towns(munis :: Table) -> Table:

 doc: "Return a table of towns ordered by their growth"

 towns = filter-with(munis, is-town)

 towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

 order-by(towns-with-percent-change, "percent-change", false)

end

We’ve done a bit of a bad thing here: We’ve written
three functions, but we don’t have tests for any of
them!

Let’s see how we can rectify this.

Testing table functions

We can test table program by using test tables.

These are tables that have the same structure as the
table for our real data, but which are smaller and
contain data that are useful for testing.

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

Let’s see how we use these test data to write
examples for our table functions.

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

end

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

fun is-town(r :: Row) -> Boolean:

 doc: "Check if a row is for a town"

 r["kind"] == "Town"

where:

 is-town(test-munis.row-n(0)) is false

 is-town(test-munis.row-n(1)) is true

 is-town(test-munis.row-n(3)) is false

end

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of a municipality
between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

fun percent-change(r :: Row) -> Number:

 doc: "Compute the percentage change for the population of a municipality
between 2010 and 2020"

 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

where:

 percent-change(test-munis.row-n(0)) is 0.01

 percent-change(test-munis.row-n(1)) is 0.02

 percent-change(test-munis.row-n(2)) is -0.01

end

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

fun fastest-growing-towns(munis :: Table) -> Table:

 doc: "Return a table of towns ordered by their growth"

 towns = filter-with(munis, is-town)

 towns-with-percent-change =

 build-column(towns, "percent-change", percent-change)

 order-by(towns-with-percent-change, "percent-change", false)

end

test-munis =

 table: name, kind, pop-2010, pop-2020

 row: "Osgiliath", "City", 100, 101

 row: "Lake-town", "Town", 100, 102

 row: "Bree", "Town", 100, 99

 row: "Hobbiton", "Village", 50, 54

 end

fun fastest-growing-towns(munis :: Table) -> Table:

 ...

where:

 test-munis-after =

 table: name, kind, pop-2010, pop-2020, percent-change

 row: "Lake-town", "Town", 100, 102, 0.02

 row: "Bree", "Town", 100, 99, -0.01

 end

 fastest-growing-towns(test-munis) is test-munis-after

end

Don’t just copy the function’s
output; think through what
it’s supposed to do!

Visualization

Data scientists use plots for both exploratory and
explanatory purposes – they are useful for
understanding data in preparation for further
analysis and in presenting data to a general audience.

The dcic-2021 library we’ve been using to work
with tables includes several functions to generate
different kinds of plots like the ones we’ve talked
about.

How is population distributed in the state?

pie-chart(municipalities, "name", "pop-2020")

ft = fastest-growing-towns(municipalities)

Is a town's population in 2010 correlated with

its population in 2020?

scatter-plot(ft, "pop-2010", "pop-2020")

ft = fastest-growing-towns(municipalities)

Visually present the growth data

bar-chart(ft, "name", "percent-change")

…didn’t any
towns shrink?

ft = fastest-growing-towns(municipalities)

Visually present the growth data

bar-chart(ft, "name", "percent-change")

ft = fastest-growing-towns(municipalities)

Visually present the growth data

bar-chart(ft, "name", "pop-2020")

Pyret code from class:

https://tinyurl.com/24xmn2ky

https://tinyurl.com/24xmn2ky

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Doug Woos, Brown University

