
Data Definitions

13 February 2023

CMPU 101 § 52 · Computer Science I

Where are we?

We’ve been working with tables for the past few
weeks.

Last class we saw a new data type: lists.

[list:

 "A",

 "A",

 "C",

 "B"]

››› grades

[list:

 "A",

 "A",

 "C",

 "B"]

››› grades ››› grades.get-column("letter-grade")

We used higher-order functions to work with tables,
and we can do the same with lists:

Tables Lists

transform-column map

We used higher-order functions to work with tables,
and we can do the same with lists:

Tables Lists

transform-column map

filter-with filter

››› lst = [list: "a", "b", "c"]

››› filter(

 lam(i): not(i == "a") end,

 lst)

[list: "b", "c"]

This is an anonymous
(i.e., unnamed)
function made using a
lambda expression.

Numbers, strings, images, Booleans, tables, and lists
let us represent many kinds of real data quite
naturally.

But there are times when we’re going to want
something a bit different.

Today

• data definitions (structured data)

• data definitions for a list

• recursion

• example of a recursive list function

Defining structured data

Imagine that we’re doing a study on communication
patterns among students.

We don’t have access to the messages the students
sent – hopefully they’re encrypted! – but we have
metadata for each message:

sender

recipient

day of the week

time (hour and minute)

This kind of metadata might sound uninteresting, but
it can tell us a lot!

Recommended reading:

John Bohannon, “Your call and text records are
far more revealing than you think”, Science, 2016

https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think
https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think
https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think

Imagine that we’re doing a study on communication
patterns among students.

We don’t have access to the messages the students
sent – maybe they’re encrypted! – but we have
metadata for each message:

sender

recipient

day of the week

time (hour and minute)

How should we store this data?

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: …

"4015551234" "8025551234" "Mon" …

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: String

"4015551234" "8025551234" "Mon" "4:55"

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: String

"4015551234" "8025551234" "Mon" 295

We could have a table, e.g.,

sender :: String recipient :: String day :: String time :: List

"4015551234" "8025551234" "Mon" [list: 4, 55]

We could have a table, e.g.,

sender :: String recipient :: String day :: String hour :: Number minute :: Number

"4015551234" "8025551234" "Mon" 4 55

If we use multiple columns, we can access the
components independently, by name, but if we use a
single column, all of the “time” data is in one place.

To resolve this trade-off, we add structure: We can
have a single data type that has named parts.

data Time:

 | time(hours :: Number, mins :: Number)

end

data Time:

 | time(hours :: Number, mins :: Number)

end

The name of the data type

data Time:

 | time(hours :: Number, mins :: Number)

end

A constructor function that builds the data type

data Time:

 | time(hours :: Number, mins :: Number)

end

The components of the data

After defining the data type,

data Time:

 | time(hours :: Number, mins :: Number)

end

we can call time to build Time values,

››› noon = time(12, 0)

››› half-past-three = time(3, 30)

and we can use dot notation to access the components:

››› noon.hours

12

››› half-past.mins

30

Our table could now be:

sender :: String recipient :: String day :: String time :: Time

"4015551234" "8025551234" "Mon" time(4, 55)

Conditional data

data Time:

 | time(hours :: Number, mins :: Number)

end

The only way to make a Time is to
call the time() constructor function.

But we can also define conditional data, where there
are multiple varieties of the data.

The varieties can just be fixed values, e.g.,

data Day:

 | sunday

 | monday

 | tuesday

 | wednesday

 | thursday

 | friday

 | saturday

end

Or they can be separate constructors, e.g.,

data Message:

 | direct(sender :: String,

 recipient :: String,

 message :: String)

 | group(sender :: String,

 recipients :: List<String>,

 message :: String)

end

Or we can mix these together, e.g.,

data Name:

 | name(first :: String, last :: String)

 | anonymous

end

Recursive data definitions

Last week we worked with lists – ordered
sequences of items, equivalent to a column in a
table.

Much like the rows in a table, the items in a list have
numeric indices:

››› lst = [list: "a", "b", "c"]

And we can access items using these indices:

››› lst.get(0)

"a"

››› lst.get(1)

"b"

0 1 2

But writing the list as [list: "a", "b", "c"] is
just a convenient deception!

(syntactic sugar)

In its secret heart, Pyret knows there are only two
ways of making a list.

A list is either:

	 empty or

	 linking an item to another list.

That is, a list is a kind of conditional data:

data List:

 | empty

 | link(first :: Any, rest :: List)

end

So, a list of one item, e.g.,

[list: "A"],

is really a link between an item and the empty list:

link("A", empty)

[list:

 "A",

 "A",

 "C",

 "B"]

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

Recursion

1

1+1=22+1=33+1=44+1=5

1

1+1=22+1=33+1=44+1=5

Count all the buses

Count all the buses

Count all the buses

Count all the buses

Count
one bus

Recursion is a programming technique where a
problem is solved by solving a smaller version of the
same problem, unless that smaller version is simple
enough to solve directly.

We call the small version that can be solved directly
the base case of the recursive problem.

To write our own functions to process a list, item by
item, we need to use the true form of a list and
think recursively.

Designing functions using  
the definition of a list

How would we write a function that takes a list of
numbers and returns its sum?

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is ...

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4

 my-sum([list: 1, 4]) is 1 + 4

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4

 my-sum([list: 1, 4]) is 1 + 4

 my-sum([list: 3, 1, 4]) is 3 + 1 + 4

end

fun my-sum(lst :: List<Number>) -> Number: 
 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4

 my-sum([list: 1, 4]) is 1 + 4

 my-sum([list: 3, 1, 4]) is 3 + 1 + 4

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + 0

 my-sum([list: 1, 4]) is 1 + 4 + 0

 my-sum([list: 3, 1, 4]) is 3 + 1 + 4 + 0

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 ...

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 ...

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 ...

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

cases is like a special if
statement that we use to ask
“which shape of data do I
have?”

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 ...

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

 If the list is empty, do one thing.

 If it’s a link, do another thing.

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 ...

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

Denotes the output
of a function

Marks the
expression to
evaluate if the data
has the shape on
the left.

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 ...

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

And this is giving names for referring to the arguments to link.

This gives names for referring to the arguments to my-sum.

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 ...

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 0

 | link(f, r) =>

 ...

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 0

 | link(f, r) =>

 f + my-sum(r)

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty =>  
 0

 | link(f, r) =>

 f + my-sum(r)

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty => 0

 | link(f, r) => f + my-sum(r)

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:

 doc: "Return the sum of the numbers in the list"

 cases (List) lst:

 | empty => 0

 | link(f, r) => f + my-sum(r)

 end

where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

When we call this function, it evaluates as:

	 my-sum(link(3, link(1, link(4, empty))))

→	3 + my-sum(link(1, link(4, empty)))

→	3 + 1 + my-sum(link(4, empty))

→	3 + 1 + 4 + my-sum(empty)

→	3 + 1 + 4 + 0

Thinking recursively

Any time a problem is structured such that the
solution on larger inputs can be built from the
solution on smaller inputs, recursion is appropriate.

All recursive functions have these two parts:

Base case(s):

What’s the simplest case to solve?

Recursive case(s):

What’s the relationship between the current case and the answer to
a slightly smaller case?

You should be calling the function you’re defining here; this is
referred to as a recursive call.

fun recursive-function(lst :: List) -> ...:

 cases (List) lst:

 | empty =>

 ...

 | link(f, r) =>

 ... recursive-function(r) ...

 end

end

Base case

Recursive case

Each time you make a recursive call, you must make
the input smaller somehow.

If your input is a list, you pass the rest of the list to the recursive call.

link("A",

 link("A",

 link("C",

 link("B",

 empty))))

Rest

First

››› lst = [list: "item 1", "and", "so", "on"]

››› lst.first

"item 1"

››› lst.rest

[list: "and", "so", "on"]

cases (List) lst:

 | empty => ...

 | link(f, r) => ...

end 

First Rest

What happens if we don’t make the input smaller?

fun my-sum(lst :: List<Number>) -> Number:

 cases (List) lst:

 | empty => 0

 | link(f, r) => f + my-sum(r)

 end 
where: 
 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

Recursive call on the rest of the input list

fun my-sum(lst :: List<Number>) -> Number:

 cases (List) lst:

 | empty => 0

 | link(f, r) => f + my-sum(lst)

 end 
where:

 my-sum([list:]) is 0

 my-sum([list: 4]) is 4 + my-sum([list:])

 my-sum([list: 1, 4]) is 1 + my-sum([list: 4])

 my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

Recursive call on the original input list

When we call this function, it evaluates as:

	 my-sum(link(3, link(1, link(4, empty))))

→	3 + my-sum(link(3, link(1, link(4, empty))))

→	3 + 3 + my-sum(link(3, link(1, link(4, empty))))

→	3 + 3 + 3 + my-sum(link(3, link(1, link(4,
empty))))

...

This isn’t going to end well.

When a recursive function never stops calling itself,
it’s called infinite recursion.

Wrap-up practice

fun list-len(lst :: List) -> Number:

 doc: "Compute the length of a list"

 cases (List) lst:

 | empty => 0

 | link(f, r) => 1 + list-len(____)

 end

end

fun list-len(lst :: List) -> Number:

 doc: "Compute the length of a list"

 cases (List) lst:

 | empty => 0

 | link(f, r) => 1 + list-len(r)

 end

end

fun list-product(lst :: List<Number>) -> Number:

 doc: "Compute the product of all the numbers in lst"

 cases (List) lst:

 | empty => 1

 | link(f, r) => ____ * list-product(r)

 end

end

fun list-product(lst :: List<Number>) -> Number:

 doc: "Compute the product of all the numbers in lst"

 cases (List) lst:

 | empty => 1

 | link(f, r) => f * list-product(r)

 end

end

fun is-member(item, lst :: List) -> Boolean:

 doc: "Return true if item is a member of lst"

 cases (List) lst:

 | empty => ______

 | link(f, r) =>

 (f == ______) or (is-member(______, ______)

 end

end

fun is-member(item, lst :: List) -> Boolean:

 doc: "Return true if item is a member of lst"

 cases (List) lst:

 | empty => false

 | link(f, r) =>

 (f == item) or (is-member(item, r)

 end

end

Final note

Lists, recursion, and cases syntax are not easy
concepts to grasp separately, much less all together
in a short time.

Don’t feel frustrated if it takes a little while for these
to make sense. Give yourself time, be sure to
practice working in Pyret, and ask questions.

Class code:

tinyurl.com/101-2023-02-13

https://tinyurl.com/101-2023-02-13

Acknowledgments

This lecture incorporates material from:

Kathi Fisler, Brown University

Ab Mosca, Northeastern University

Doug Woos, Brown University

