
Reactors

1 March 2023 

CMPU 101 § 52 · Computer Science I

Where are we? 

Where are we? 
Traffic-light world

All traffic lights are the same size and position on
the screen.

What distinguishes them?

Asking this helps us think about data

All traffic lights are the same size and position on
the screen.

How do we get from one to the other?

Asking this helps us think about functions

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

data TrafficLight:

 ...

end

data TrafficLight:

 | green

 | yellow

 | red

end

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

data TrafficLight:

 | green

 | yellow

 | red

end

TL-GREEN = green

TL-YELLOW = yellow

TL-RED = red

For this data definition, the examples are so trivial we
can skip them, but you saw in lab on Friday how helpful
it can be to have examples when you have a lot of
possibilities!

data TrafficLight:

 | green

 | yellow

 | red

end

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

data TrafficLight:

 | green

 | yellow

 | red

end

data TrafficLight:

 | green

 | yellow

 | red

end

#|

fun trafficlight-fun(tl :: TrafficLight) -> ...:

|#

data TrafficLight:

 | green

 | yellow

 | red

end

#|

fun trafficlight-fun(tl :: TrafficLight) -> ...:

 doc: "TrafficLight template"

 cases (TrafficLight) tl:

 | green => ...

 | yellow => ...

 | red => ...

 end

where:

 trafficlight-fun(green) is ...

 trafficlight-fun(yellow) is ...

 trafficlight-fun(red) is ...

end |#

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

Pyret has a mechanism for supporting interactive
programs, called a reactor.

To use it, first write

include reactors

reactor:

 init: initial-state

 to-draw: draw-function

 event-type: event-function

end

reactor:

 init: initial-state

 to-draw: draw-function

 event-type: event-function

end

Less nuclear reactor; more person-that-reacts to something.

reactor puts all the pieces together to start things
going.

initial state

some event happens…

next state

next state

now the current state

some event happens…

next state

now the current state

some event happens…

next state

now the current state

reactor:

 init: initial-state,

 to-draw: draw-function,

 event-type: event-function

end

reactor:

 init: green,

 to-draw: draw-function,

 event-type: event-function

end

reactor:

 init: green,

 to-draw: draw-light,

 event-type: event-function

end

We haven’t written this;
add it to our wishlist!

reactor:

 init: green,

 to-draw: draw-light,

 on-tick: next-light

end

Another function for the
wishlist!

So far…

TrafficLight data

- definition

- examples

- template

define reactor

Wishlist:

- fun draw-light...

- fun next-light...

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

fun draw-light(tl :: TrafficLight) -> Image:

 ...

end

fun draw-light(tl :: TrafficLight) -> Image:

 ...

end

fun next-light(tl :: TrafficLight) -> TrafficLight:

 ...

end

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

fun draw-light(tl :: TrafficLight) -> Image:

 doc: "Draw a circle of the given color, rendering a traffic light"

 ...

end

fun next-light(tl :: TrafficLight) -> TrafficLight:

 ...

end

fun draw-light(tl :: TrafficLight) -> Image:

 doc: "Draw a circle of the given color, rendering a traffic light"

 ...

end

fun next-light(tl :: TrafficLight) -> TrafficLight:

 doc: "Produce the next light in the sequence green, yellow, red"

 ...

end

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

fun draw-light(tl :: TrafficLight) -> Image:

 doc: "Draw a circle of the given color, rendering a traffic light"

 ...

where:

 draw-light(green) is circle(20, "solid", "green")

 draw-light(yellow) is circle(20, "solid", "yellow")

 draw-light(red) is circle(20, "solid", "red")

end

fun next-light(tl :: TrafficLight) -> TrafficLight:

 doc: "Produce the next light in the sequence green, yellow, red"

 ...

end

fun draw-light(tl :: TrafficLight) -> Image:

 doc: "Draw a circle of the given color, rendering a traffic light"

 ...

where:

 draw-light(green) is circle(20, "solid", "green")

 draw-light(yellow) is circle(20, "solid", "yellow")

 draw-light(red) is circle(20, "solid", "red")

end

fun next-light(tl :: TrafficLight) -> TrafficLight:

 doc: "Produce the next light in the sequence green, yellow, red"

 ...

where:

 next-light(green) is yellow

 next-light(yellow) is red

 next-light(red) is green

end

Data definition

Examples

Template

Data Functions

Signature

Docstring

Examples

Body

Shrinking circle world

Fractal tree

How can we draw a tree?

A big tree is a stick with two smaller trees on top;

but a little tree is just a stick.

A big tree is a stick with two smaller trees on top;

but a little tree is just a stick.

data Tree:

 | stick

 | branch(t1 :: Tree, t2 :: Tree)

end

To finish this data definition, we should add
examples and a template function.

Examples

lil-tree = branch(stick, stick)

big-tree =

 branch(

 branch(stick, stick),

 branch(stick, stick))

Template

#|

fun tree-fun(tree :: Tree) -> ...:

 doc: "Tree template"

 cases (Tree) tree:

 | stick => ...

 | branch(t1, t2) => ... tree-fun(t1) ... tree-fun(t2) ...

 end

where:

 tree-fun(stick) is ...

 tree-fun(lil-tree) is ...

 tree-fun(big-tree) is ...

end

|#

How can we draw a Tree?

fun draw-tree-size(tree :: Tree, size :: Number) -> Image:

 doc: "Draw a tree based on a line of the specified size"

 stick-tree = line(1, size, "black")

 cases (Tree) tree:

 | stick =>

 # A small tree is just a stick

 stick-tree

 | branch(t1, t2) =>

 # A branch is

 above(

 # Two smaller trees

 beside(

 rotate(45,

 draw-tree-size(t1, size / 2)),

 rotate(-45,

 draw-tree-size(t2, size / 2))),

 # Above a stick

 stick-tree)

 end

end

TREE-SIZE = 400

fun draw-tree(tree :: Tree) -> Image:

 doc: "Draw a tree (and its subtrees)"

 draw-tree-size(tree, TREE-SIZE)

end

Now, let’s use a reactor to animate the recursion of
the fractal, starting from the simplest tree and
working toward a full, leafy one.

One more reactor

https://yewtu.be/watch?v=QOtuX0jL85Y

Acknowledgments

This lecture incorporates material from:

W. Daniel Hillis, The Pattern on the Stone

Marc Smith, Vassar College

Laney Strange, Northeastern University

