
Trees

2/15/2023 CMPU 101: Problem Solving and Abstraction 1

https://poets.org/poem/trees


Steps to write a generic template

• Given a (recursive) data definition, you write a generic template by:
1. Creating a function header,

2. Using cases to break the data input into its variants,
• In each case, list each of the fields as part of the answer

3. And, calling the function itself on any recursive fields.

2/15/2023 CMPU 101: Problem Solving and Abstraction 2



Data Definition: Start With A Template

data MyList:
| my-empty
| my-link(first, rest :: MyList)

end

2/15/2023 3CMPU 101: Problem Solving and Abstraction



Debrief: lists and recursion

data MyList:
| my-empty
| my-link(first, rest :: MyList)

end

2/15/2023 4

What's different here? 
1. We have a case that's just a special keyword rather than a constructor. 
2. Part of the second case” is of the same type we're defining.

• A recursive definition!

CMPU 101: Problem Solving and Abstraction



Using my-list Data Template

We use this template to write a function that recursively processes the data:

fun my-fun(ml :: MyList) -> ...:
doc: "Template for a function that takes a MyList"
cases (MyList) ml:
| my-empty => ...
| my-link(f, r) =>
... f ...
... my-fun(r) …

end
where:

my-fun(...) is ...
end

2/15/2023 CMPU 101: Problem Solving and Abstraction 5



Tracking rumors

• Suppose we want to track gossip in a rumor mill.



Ginny controls the rumor mill



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Cho



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Romilda

Vincent

Cho



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Romilda

Vincent

Ginny

Cho



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Cho

Romilda

Vincent

Ginny

Simplifying 
assumption: Each 
person tells at most 
two others



Tracking rumors

• Suppose we want to track gossip in a rumor mill.

Pansy

Draco

Romilda

Vincent

Ginny

Simplifying 
assumption: Each 
person tells at most 
two others

Cho



• If you ignore my silly Harry Potter example, this is a 
pretty serious problem.

• A lot of research right now is focused on building 
models of how information – and misinformation! 
– spreads through social networks, both in person 
and online.

Tracking rumors



Representing rumor mills

Is a rumor mill simply a list of people?



Representing rumor mills

Question: Is a rumor mill simply a list of people?

Answer: No, because there are 
relationships among the people.



Representing rumor mills

We could represent these

relations with a table, e.g., name :: String next1 :: String next2 :: String

"Pansy" "Cho" "Draco"

"Cho"

… … …



Representing rumor mills

Using a table doesn’t give us any straightforward 

way to process the rumor mill.

Could we use something like a list but 

representing the relations?



Representing rumor mills

data Person:
| person(name :: String, next1 :: Person, next2 :: Person)

end
How about this?



data Person:
| person(name :: String, next1 :: Person, next2 :: Person)

end

Representing rumor mills



data RumorMill:
| no-one
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Representing rumor mills

How about this?



Example rumor mills

no-one

data RumorMill:
| no-one #at the start there is… no-one in the rumor mill!
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end



Example rumor mills

gossip("Ginny", no-one, no-one)

Ginny

data RumorMill:
| no-one
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end



data RumorMill:
| no-one
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end

Example rumor mills

gossip("Romilda",
no-one,
gossip("Ginny", no-one, no-one))

Ginny

Romilda



gossip("Pansy",

gossip("Cho", no-one, no-one)
gossip("Draco",
gossip("Romilda", 
no-one
gossip("Ginny", no-one, no-one))

gossip("Vincent", no-one, no-one)))



GINNY-MILL = 
gossip("Ginny", no-one, no-one)

ROMILDA-MILL =
gossip("Romilda", no-one, GINNY-MILL)

VINCENT-MILL =
gossip("Vincent", no-one, no-one)

DRACO-MILL =
gossip("Draco", ROMILDA-MILL, VINCENT-MILL)

CHO-MILL =
gossip("Cho", no-one, no-one)

PANSY-MILL =
gossip("Pansy", CHO-MILL, DRACO-MILL)

Example, using names for the parts



• A RumorMill is a type of structure called a tree.
• Each element in the tree is called a node.

• The first node in the tree is called the root.

• A node with no children is called a leaf.

• Like a list, a tree is recursive: Every subtree is a 
tree.

Computer Science concepts wrung from a rumor mill



Programming with rumors

data RumorMill:
| no-one
| gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)

end



2/15/2023 CMPU 101: Problem Solving and Abstraction 30

Rumor Mill Template



Rumor Mill Template

2/15/2023 CMPU 101: Problem Solving and Abstraction 31



Rumor Mill Examples

• Design the function is-informed that takes a
person’s name and a rumor mill and determines
whether the person is part of the rumor mill.

2/15/2023 CMPU 101: Problem Solving and Abstraction 32



Rumor Mill Examples

• Design the function add-gossip that takes a rumor
mill and two names – one new and one old – and
adds the new person to the rumor mill, receiving
rumors from the old person.

• (You can assume the “old person” does not already have two next
persons!)

2/15/2023 CMPU 101: Problem Solving and Abstraction 33



Realism

• In our rumor mill, we restricted each person to
spread gossip to at most two other people.

• This isn’t very realistic; some gossips talk to lots (and lots…) of people

• Let’s relax this restriction.
• Let each gossip talk to any number of people:

2/15/2023 CMPU 101: Problem Solving and Abstraction 34



Realism

• data Gossip:
| gossip(name :: String, next :: List<Gossip>)
end

• #|
fun gossip-template(g :: Gossip) -> ...:
... g.name
... log-template(g.next)
end
fun log-template(l :: List<Gossip>) -> ...:
cases (List) l:
| empty => ...
| link(f, r) =>
... gossip-template(f)
... log-template(r)
end
end
|#

2/15/2023 CMPU 101: Problem Solving and Abstraction 35



Realism

• With the more realistic template, we can…

• Design count-gossips which takes a gossip and
returns the number of people informed by the
gossip (including the starting person)

2/15/2023 CMPU 101: Problem Solving and Abstraction 36



Link to code Template

• 14-new-data-types.arr

2/15/2023 CMPU 101: Problem Solving and Abstraction 37

https://code.pyret.org/editor#share=1PhgdmURP4nXEoogyzHxkrbxmggbcoz0B&v=4f2ac8e


Acknowledgements

2/15/2023 CMPU 101: Problem Solving and Abstraction 38

• This lecture incorporates material from: 

• Kathi Fisler, Brown University,

• Marc Smith, Vassar College

• And, Jonathan Gordon, Vassar College


	Slide 1: Trees
	Slide 2: Steps to write a generic template
	Slide 3: Data Definition: Start With A Template
	Slide 4: Debrief: lists and recursion
	Slide 5: Using my-list Data Template
	Slide 6: Tracking rumors
	Slide 7
	Slide 8: Tracking rumors
	Slide 9: Tracking rumors
	Slide 10: Tracking rumors
	Slide 11: Tracking rumors
	Slide 12: Tracking rumors
	Slide 13: Tracking rumors
	Slide 14: Tracking rumors
	Slide 15
	Slide 16: Representing rumor mills
	Slide 17: Representing rumor mills
	Slide 18: Representing rumor mills
	Slide 19: Representing rumor mills
	Slide 20: Representing rumor mills
	Slide 21: Representing rumor mills
	Slide 22: Representing rumor mills
	Slide 23: Example rumor mills
	Slide 24: Example rumor mills
	Slide 25: Example rumor mills
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Programming with rumors
	Slide 30
	Slide 31: Rumor Mill Template
	Slide 32: Rumor Mill Examples
	Slide 33: Rumor Mill Examples
	Slide 34: Realism
	Slide 35: Realism
	Slide 36: Realism
	Slide 37: Link to code Template
	Slide 38: Acknowledgements 

