
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Expressions, Values, & Names

Programs

• A program (or script) instructs a computer to do
something.

• These instructions must be very specific for the computer to
carry them out.

• Recall my National Engineers week comments

• But programs also need to be understood by people, i.e. they
must be readable!

1/18/2023 2CMPU 101: Problem Solving and Abstraction

More Basics

• To write a program, we need to use a programming language
• We could write the X’s 1’s and 0’s (apologies to Elle King) in a way that the

computer can understand the input stream… that’s what assembly language
is for, btw!

• and programming environment. Also known as an Interactive
Development Environment, IDE

• We write our computation in the (specified) programming language.

• We run the program in the environment.
• There’s more to the story, but this will suffice for now.

1/18/2023 CMPU 101: Problem Solving and Abstraction 3

Introducing our IDE

• …Both sides now

1/18/2023 CMPU 101: Problem Solving and Abstraction 4

Introducing our IDE

• From up and down

1/18/2023 CMPU 101: Problem Solving and Abstraction 5

On RHS is: The Prompt! (>>>)

Things you can do LHS/RHS

• And still somehow

1/18/2023 CMPU 101: Problem Solving and Abstraction 6

• Try out expressions

• Check syntax

• Save your code!

• Write expressions

• Name expressions

• Use previously defined

expressions

Pop Quiz!

Which pane would I use if...

1. I want to see if I can make a blue circle?

2. I want to define my-shape as a blue circle and use it later in my
code?

3. I want to see if Pyret will accept this: print "5"?

4. I want to start my assignment now and finish it later?

1/18/2023 CMPU 101: Problem Solving and Abstraction 7

Let’s start to program by considering… Flags ?

1/18/2023 CMPU 101: Problem Solving and Abstraction 8

• Let’s start with the data – consider flags here - before we dive in and
write code.

• Dimensions, shapes, juxtapositions, etc.

• For instance, we might want to compute
• heights of the stripes given: overall flag dimensions,

➢Which means we need to write programs over [the set of] numbers.

• We also need a way to describe colors to our program.

• More generally, we need a way to create images
• based on simple shapes of different colors.

OK, we want to print some flags…

1/18/2023 CMPU 101: Problem Solving and Abstraction 9

Numbers

• Consider
• An individual number like 5 is a value – it can’t be computed any

further.

• An expression like(3 + 4) * (5 + 1) is a computation that
produces an answer.

• A program – any program - consists of one or more
computations

• Question: what about 3 + 4 * 5 + 1 ?

• WWJD?

1/18/2023 CMPU 101: Problem Solving and Abstraction 10

Numbers

• Consider
• An individual number like 5 is a value – it can’t be computed any

further.

• An expression like(3 + 4) * (5 + 1) is a computation that
produces an answer.

• A program – any program - consists of one or more
computations

• Question: what about 3 + 4 * 5 + 1 ?

• WWJD? See…
https://introcs.cs.princeton.edu/java/11precedence/

1/18/2023 CMPU 101: Problem Solving and Abstraction 11

In pyret…

1/18/2023 CMPU 101: Problem Solving and Abstraction 12

Colors

• Consider

•Names can be given as text strings, e.g.,
“purple"

• Pyret will understand what “purple“ means in the

context of a color, i.e. if pyret is expecting a text string
that represents a color. Let’s clarify…

1/18/2023 CMPU 101: Problem Solving and Abstraction 13

Shapes

• Consider

•››› include image
››› circle(50, "solid", “purple")

• We’re asking pyret to create an image, specifically a solid
purple circle with some dimension of 50.

1/18/2023 CMPU 101: Problem Solving and Abstraction 14

Shapes

• Like numbers, we can manipulate images…
• Numbers can be added, subtracted, etc.
• Similarly, Images can overlaid, rotated, flipped, etc.

1/18/2023 CMPU 101: Problem Solving and Abstraction 15

Moving On To Evaluations

1/18/2023 CMPU 101: Problem Solving and Abstraction 16

Moving On To Evaluations

1/18/2023 CMPU 101: Problem Solving and Abstraction 17

More On Evaluations

1/18/2023 CMPU 101: Problem Solving and Abstraction 18

• An expression of the form
⟨name⟩ = ⟨expression⟩
tells Pyret to associate the value of
⟨expression⟩ with ⟨name⟩.
Every time you type ⟨name⟩, Pyret will substitute the value for you:
x = 5

x + 4

will evaluate to 9.

Creating a definition…

1/18/2023 CMPU 101: Problem Solving and Abstraction 19

Naming Conventions

1/18/2023 CMPU 101: Problem Solving and Abstraction 20

• Every programming language has its own
conventions for names.

• In Pyret, names are lowercase with words joined by hyphens, e.g.,
this-is-a-good-name

this_makes_bonny_cry

thisIsACrimeAgainstPyret

Naming Conventions (2)

1/18/2023 CMPU 101: Problem Solving and Abstraction 21

Let’s try drawing something an eyeball

1/18/2023 CMPU 101: Problem Solving and Abstraction 22

Let’s try drawing something an eyeball 2 eyeballs!

1/18/2023 CMPU 101: Problem Solving and Abstraction 23

Whoops! Whoopsie! Don’t forget documentation!

1/18/2023 CMPU 101: Problem Solving and Abstraction 24

Final Thoughts on the eyeballs

1/18/2023 CMPU 101: Problem Solving and Abstraction 25

• As you build up more complex images from simpler ones, you’re
following a core idea called:

composition.

• Programs are always built of smaller programs that do parts of
the larger task you want to perform.

• We’ll use composition throughout this course

Next: What does this code do?

1/18/2023 CMPU 101: Problem Solving and Abstraction 26

• # Create the head: a yellow circle with black border

• base = circle(50, "solid", "yellow")

• base-border = circle(53, "solid", "black")

• head = overlay(base, base-border)

• # Create pair of eyes, using a square as a spacer

• eye = circle(9, "solid", "blue")

• eye-spacer = square(12, "solid", "yellow")

• one-eye-with-space = beside(eye, eye-spacer)

• eyes = beside(one-eye-with-space, eye)

• # Add a mouth to the eyes to make a face

• mouth = ellipse(30, 15, "solid", "red")

• mouth-spacer = rectangle(30, 15, "solid", "yellow")

• eyes-with-mouth-space = above(eyes, mouth-spacer)

• face = above(eyes-with-mouth-space, mouth)

• # Put the face on the head

• emoji = overlay-align("center", "center", face, head)

• emoji

Too slow: This code makes a smiley emojii

1/18/2023 CMPU 101: Problem Solving and Abstraction 27

This also makes a smiley emojii

1/18/2023 CMPU 101: Problem Solving and Abstraction 28

Which version is “better?”

1/18/2023 CMPU 101: Problem Solving and Abstraction 29

• The first set of code may seem easier to understand. At first.

• As we get more involved working with structured data,
writing code like the second slide will be more useful:

• The structure of well written program tends to reflect the structure
of the data you are working with.

Eyeball code: Copy From

1/18/2023 CMPU 101: Problem Solving and Abstraction 30

• a = ellipse(65, 115, "solid", "black")

• b = ellipse(50, 100, "solid", "white")

• eyeball = overlay(b, a)

• pupil = ellipse(15, 25, "solid", "black")

• #overlay(pupil, eyeball)

• #overlay-xy(pupil,-35, -60, eyeball)

• left-eyeball = overlay-xy(pupil,-35, -60, eyeball)

• right-eyeball = flip-horizontal(left-eyeball)

• beside(left-eyeball, right-eyeball)

2nd set of emoji code: Copy From

1/18/2023 CMPU 101: Problem Solving and Abstraction 31

Create the head: a yellow circle with black border

base = circle(50, "solid", "yellow")

head = overlay(base, circle(53, "solid", "black"))

Create a pair of eyes, using a square as a spacer

eye = circle(9, "solid", "blue")

eyes =

beside(

eye,

beside(

square(12, "solid", "yellow"), # eye spacer

eye))

Add a mouth to the eyes to make a face

mouth = ellipse(30, 15, "solid", "red")

face =

above(

eyes,

above(

rectangle(30, 15, "solid", "yellow"), # mouth spacer

mouth))

Put the face on the head

emoji = overlay-align("center", "center", face, head)

emoji

	Slide 1: Expressions, Values, & Names
	Slide 2: Programs
	Slide 3: More Basics
	Slide 4: Introducing our IDE
	Slide 5: Introducing our IDE
	Slide 6: Things you can do LHS/RHS
	Slide 7: Pop Quiz!
	Slide 8: Let’s start to program by considering… Flags ?
	Slide 9: OK, we want to print some flags…
	Slide 10: Numbers
	Slide 11: Numbers
	Slide 12: In pyret…
	Slide 13: Colors
	Slide 14: Shapes
	Slide 15: Shapes
	Slide 16: Moving On To Evaluations
	Slide 17: Moving On To Evaluations
	Slide 18: More On Evaluations
	Slide 19: Creating a definition…
	Slide 20: Naming Conventions
	Slide 21: Naming Conventions (2)
	Slide 22: Let’s try drawing something an eyeball
	Slide 23: Let’s try drawing something an eyeball 2 eyeballs!
	Slide 24: Whoops! Whoopsie! Don’t forget documentation!
	Slide 25: Final Thoughts on the eyeballs
	Slide 26: Next: What does this code do?
	Slide 27: Too slow: This code makes a smiley emojii
	Slide 28: This also makes a smiley emojii
	Slide 29: Which version is “better?”
	Slide 30: Eyeball code: Copy From
	Slide 31: 2nd set of emoji code: Copy From

