
Working with Tables

1 February 2023

CMPU 101 § 53 · Computer Science I

Assignment 1

Assignment 2

Lab 2

Due tonight

Out tomorrow

Due Friday

Where are we?

Lots of real-world data is

naturally represented as

tables.

Lots of real-world data is

naturally represented as

tables.

municipalities =

table: name, kind, pop-2010, pop-2020

row: "Adams", "Town", 5143, 4973

row: "Adams", "Village", 1775, 1633

row: "Addison", "Town", 2595, 2397

row: "Addison", "Village", 1763, 1561

row: "Afton", "Town", 2851, 2769

...

end

Lots of real-world data is

naturally represented as

tables.

››› municipalities

Recap: Accessing parts of a table

To get a particular row from a table, we use its

numeric index n, counting from 0:
⟨table⟩.row-n(0)

››› municipalities

››› municipalities.row-n(0)

››› municipalities

››› municipalities.row-n(1)

››› municipalities

››› municipalities.row-n(2)

To get a particular column’s value from a row,

we specify the column name using square

brackets:
⟨row⟩["column name"]

››› municipalities.row-n(0)

››› municipalities.row-n(0)

››› municipalities.row-n(0)["name"]
"Adams"

››› municipalities.row-n(0)["pop-2020"]
4973

Recap: Ordering tables

To do more with tabular data, first include the

textbook library:
include shared-gdrive("dcic-2021",

"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

We can transform tabular data to get a

particular view. E.g., to order the rows from the

highest 2020 population to the lowest:
››› order-by(municipalities, "pop-2020", false)

We can transform tabular data to get a

particular view. E.g., to order the rows from the

highest 2020 population to the lowest:
››› order-by(municipalities, "pop-2020", false)

lowest
highe

st

true

››› municipalities.row-n(0)

››› order-by(municipalities, "pop-2020", false).row-n(0)

››› municipalities.row-n(0)

››› order-by(municipalities, "pop-2020", false).row-n(0)

››› ordered = order-by(municipalities, "pop-2020", false)
››› ordered.row-n(0)

››› ordered = order-by(municipalities, "pop-2020", false)
››› biggest = ordered.row-n(0)
››› biggest["pop-2020"]
8175133

Recap: Filtering tables

We can use filter-with to get just the towns:
fun is-town(r :: Row) -> Boolean:

doc: "Check if a row is for a town"
r["kind"] == "Town"

end

filter-with(municipalities, is-town)

Or we could mke a table keeping only those

municipalities with a population over 10,000:
fun big-muni(r :: Row) -> Boolean:

doc: "Return true if the municipality had over 10,000 people had in 2020"
r["pop-2020"] > 10000

end

››› filter-with(municipalities, big-muni)

Exercise

PROBLEM Figure out what the fastest-growing

towns are in New York.

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of a municipality

between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]

end

We can write a function that takes a row

as input and returns any kind of value,

not just a Boolean.

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of a municipality

between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]

end

towns-with-percent-change =
build-column(towns, "percent-change",
percent-change) Name of the new column

Name of the function to use

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of a municipality

between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]

end

towns-with-percent-change =
build-column(towns, "percent-change",
percent-change)

fastest-growing-towns =
order-by(towns-with-percent-change,
"percent-change", false)

fastest-growing-towns

Review: Building a column

So, if we have this table, t,

then the result of calling build-column(t, "c", builder) is:

a b

"dog" 2

"cat" 3

a b c

"dog" 2 builder(<"dog", 2>)

"cat" 3 builder(<"cat", 3>)

For example, if we have
fun builder(r :: Row) -> Number:

string-length(row["a"]) + row["b"]
end

Then we end up with the following table:
a b c

"dog" 2 5

"cat" 3 6

The values that the builder function returns will

be the values in the new column that we’re

adding to each row.

build-column ::
(t :: Table,
colname :: String,
builder :: (Row -> A))
-> Table

What’s this argument?

This is the second time we’ve seen a function

that takes a function as one of its inputs!

Both filter-with and build-column need a helper

function that tells them how to do what we

want.

Just as a function is an abstraction over specific computations,

filter-with and build-column are abstractions over more specific

functions.

They provide the common functionality and the arguments we

give provide the specifics.

Interlude: Functional programming

We can

sort the rows a table with order-with,

select certain rows using filter-with, and

add a new column of values with build-column

but none of these functions change the original

table!

Just as the expression 2 + 3 doesn’t change the

value of 2 or of 3, functions that take a table as

input don’t change the original table.

Instead, they return a new table.

This is a paradigm called functional

programming.

If you have experience working in other languages, this may

seem strange, but it can be extremely useful!

We’ll explore the idea of functional programming more in the

coming weeks.

Loading Google Sheets into Pyret

We’ve seen that it’s inconvenient to type a

large table into a Pyret program. Last time, we

loaded the municipalities table from a separate

Pyret file that I prepared ahead of time.

It’s more usual to load a large data set from

outside of Pyret.

https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing

include gdrive-sheets

The ID of the Google Sheets file, which appears
in the URL
ssid = "1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs"

spreadsheet = load-spreadsheet(ssid)

A spreadsheet might have more than one

sheet (the tabs at the bottom of Google

Sheets). But, in this case, we just have one:
››› spreadsheet
spreadsheet("municipalities")

To load a table from a spreadsheet, we need to

tell Pyret which sheet to load it from and what

we want the columns to be called (which can

be different from what is in the spreadsheet):

municipalities =
load-table:
name, kind, pop-2010, pop-2020
source:

spreadsheet.sheet-by-name("municipalities",
true)

end
This means there’s a header row that Pyret should skip

Using our table loaded from Google Sheets,

let’s revisit our code from earlier for finding the

fastest-growing towns.

fun is-town(r :: Row) -> Boolean:
doc: "Check if a row is for a town"
r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of a municipality between 2010

and 2020"
(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

towns = filter-with(municipalities, is-town)

towns-with-percent-change =
build-column(towns, "percent-change", percent-change)

fastest-growing-towns =
order-by(towns-with-percent-change,
"percent-change", false)

fastest-growing-towns

Let’s take these

loose expressions

and put them in a

function!

fun is-town(r :: Row) -> Boolean:
doc: "Check if a row is for a town"
r["kind"] == "Town"

end

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of a municipality between 2010

and 2020"
(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

fun fastest-growing-towns(munis :: Table) -> Table:
doc: "Return a table of towns ordered by their growth"

towns = filter-with(munis, is-town)

towns-with-percent-change =
build-column(towns, "percent-change", percent-change)

order-by(towns-with-percent-change, "percent-change", false)
end

We’ve done a bit of a bad thing here: We’ve

written three functions, but we don’t have tests

for any of them!

Let’s see how we can rectify this.

Testing table functions

We can test table program by using test tables.

These are tables that have the same structure

as the table for our real data, but which are

smaller and contain data that are useful for

testing.

test-munis =
table: name, kind, pop-2010, pop-2020
row: "Osgiliath", "City", 100, 101
row: "Lake-town", "Town", 100, 102
row: "Bree", "Town", 100, 99
row: "Hobbiton", "Village", 50, 54

end

test-munis =
table: name, kind, pop-2010, pop-2020
row: "Osgiliath", "City", 100, 101
row: "Lake-town", "Town", 100, 102
row: "Bree", "Town", 100, 99
row: "Hobbiton", "Village", 50, 54

end

Let’s see how we use these test data to write

examples for our table functions.

test-munis =

table: name, kind, pop-2010, pop-2020

row: "Osgiliath", "City", 100, 101

row: "Lake-town", "Town", 100, 102

row: "Bree", "Town", 100, 99

row: "Hobbiton", "Village", 50, 54

end

fun is-town(r :: Row) -> Boolean:

doc: "Check if a row is for a town"

r["kind"] == "Town"

end

test-munis =

table: name, kind, pop-2010, pop-2020

row: "Osgiliath", "City", 100, 101

row: "Lake-town", "Town", 100, 102

row: "Bree", "Town", 100, 99

row: "Hobbiton", "Village", 50, 54

end

fun is-town(r :: Row) -> Boolean:

doc: "Check if a row is for a town"

r["kind"] == "Town"

where:

is-town(test-munis.row-n(0)) is false

is-town(test-munis.row-n(1)) is true

is-town(test-munis.row-n(3)) is false

end

test-munis =

table: name, kind, pop-2010, pop-2020

row: "Osgiliath", "City", 100, 101

row: "Lake-town", "Town", 100, 102

row: "Bree", "Town", 100, 99

row: "Hobbiton", "Village", 50, 54

end

fun percent-change(r :: Row) -> Number:

doc: "Compute the percentage change for the population of a municipality between 2010 and 2020"

(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

test-munis =

table: name, kind, pop-2010, pop-2020

row: "Osgiliath", "City", 100, 101

row: "Lake-town", "Town", 100, 102

row: "Bree", "Town", 100, 99

row: "Hobbiton", "Village", 50, 54

end

fun percent-change(r :: Row) -> Number:

doc: "Compute the percentage change for the population of a municipality between 2010 and 2020"

(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

where:

percent-change(test-munis.row-n(0)) is 0.01

percent-change(test-munis.row-n(1)) is 0.02

percent-change(test-munis.row-n(2)) is -0.01

end

test-munis =

table: name, kind, pop-2010, pop-2020

row: "Osgiliath", "City", 100, 101

row: "Lake-town", "Town", 100, 102

row: "Bree", "Town", 100, 99

row: "Hobbiton", "Village", 50, 54

end

fun fastest-growing-towns(munis :: Table) -> Table:

doc: "Return a table of towns ordered by their growth"

towns = filter-with(munis, is-town)

towns-with-percent-change =

build-column(towns, "percent-change", percent-change)

order-by(towns-with-percent-change, "percent-change", false)

end

test-munis =

table: name, kind, pop-2010, pop-2020

row: "Osgiliath", "City", 100, 101

row: "Lake-town", "Town", 100, 102

row: "Bree", "Town", 100, 99

row: "Hobbiton", "Village", 50, 54

end

fun fastest-growing-towns(munis :: Table) -> Table:

...

where:

test-munis-after =

table: name, kind, pop-2010, pop-2020, percent-change

row: "Lake-town", "Town", 100, 102, 0.02

row: "Bree", "Town", 100, 99, -0.01

end

fastest-growing-towns(test-munis) is test-munis-after

end

Don’t just copy the

function’s output; think

through what it’s

supposed to do!

Visualization

Data scientists use plots for both exploratory

and explanatory purposes – they are useful for

understanding data in preparation for further

analysis and in presenting data to a general

audience.

The dcic-2021 library we’ve been using to work

with tables includes several functions to

generate different kinds of plots like the ones

we’ve talked about.

How is population distributed in the state?
pie-chart(municipalities, "name", "pop-2020")

ft = fastest-growing-towns(municipalities)

Is a town's population in 2010 correlated with
its population in 2020?
scatter-plot(ft, "pop-2010", "pop-2020")

ft = fastest-growing-towns(municipalities)

Visually present the growth data
bar-chart(ft, "name", "percent-change")

…didn’t any

towns

shrink?

ft = fastest-growing-towns(municipalities)

Visually present the growth data
bar-chart(ft, "name", "percent-change")

ft = fastest-growing-towns(municipalities)

Visually present the growth data
bar-chart(ft, "name", "pop-2020")

Pyret code from class:
https://tinyurl.com/101-2023-02-01

https://tinyurl.com/101-2023-02-01

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Doug Woos, Brown University

	Slide 1: Working with Tables
	Slide 2
	Slide 3: Where are we?
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Recap: Accessing parts of a table
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Recap: Ordering tables
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Recap: Filtering tables
	Slide 23
	Slide 24
	Slide 25: Exercise
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Review: Building a column
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Interlude: Functional programming
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Loading Google Sheets into Pyret
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Testing table functions
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Visualization
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Acknowledgments

