CMPU 101 §53 - Computer Science |

Working with Tables

1 February 2023

Assignment 1
Assignment 2
Lab 2
Due tonight
Out tomorrow

Due Friday

Where are we?

| ots of real-world data Is
naturally represented as
tables.

Population

Municipality

Adams
Adams
Addison
Addison
Afton
Afton
Airmont
Akron
Alabama
Albany
Albion
Albion
Albion
Alden
Alden
Alexander
Alexander
Alexandria
Alexandria Bay
Alfred
Alfred
Allegany
Allegany
Allen
Alma
Almond
Almond
Altamont
Altona
Amboy

T

Class

Town
Village
Town
Village
Town
Village
Village
Village
Town
City
Town
Town
Village
Town
Village
Town
Village
Town
Village
Town
Village
Town
Village
Town
Town
Town
Village
Village
Town

Town

——

i New York population

2010

5,143
1,775
2,595
1,763
2,851

822
8,628
2,868
1,869

97,856
8,468
2,073
6,056

10,865
2,605
2,534

509
4,061
1,078
5,237
4174
8,004
1,816

448

842
1,633

466
1,720
2,887
1,263

PR

v 4

2020

4,973
1,633
2,397
1,561
2,769
794
10,166
2,888
1,602
99,224
7,639
2,009
5,637
9,706
2,604
2,491
518
3,741
924
5,157
4,026
7,493
1,544
494
781
1,512
415
1,675
2,666
1,245

- — s

®

>>

| ots of real-world data Is
naturally represented as
tables.

municipalities =
: name, kind, pop-2010, pop-2020
: "Adams", "Town", 5143, 4973
: "Adams”, "Village", 1775, 1633
: "Addison", "Town", 2595, 2397
: "Addison”, "Village", 1763, 1561
: "Afton"”, "Town", 2851, 2769

| ots of real-world data Is
naturally represented as
tables.

municipalities

name

"Adams"

"Adams"

"Addison"

"Addison"

"Afton"

"Afton"

"Airmont"

"Akron"

"Alabama"

"Albany"

kind

"Town"

"Village"

"Town"

"Village"

"Town"

"Village"

"Village"

"Village"

"Town"

Ilcityll

pop—-2010

5143

1775

2595

1763

2851

822

8628

2868

1869

97856

pop—-2020

4973

1633

2397

1561

2769

794

10166

2888

1602

99224

Click to show the remaining 1517 rows...

Recap: Accessing parts of a table

To get a particular row from a table, we use Its

numeric index n, counting from O:
(tab|6).row-n(0)

municipalities

Nname

""Adams"

""Adams"

"Addison"

"Addison"

"Afton"

"Afton"

"Airmont"

"Akron"

"Alabama"

"Albany"

kind

"Town"

"Village"

"Town"

"Village"

"Town"

"Village"

"Village"

"Village"

"Town"

llcityll

pop-2010

5143

1775

2595

1763

2851

822

8628

2868

1869

97856

pop-2020

4973

1633

2397

1561

2769

794

10166

2888

1602

99224

Click to show the remaining_ 1517 rows...

municipalities.row-n(0)

"name"'

""Adams"

"kind"

"Town"

"pop-2010"

5143

"pop-2020"

4973

municipalities

Nname

""Adams"

""Adams"

"Addison"

"Addison"

"Afton"

"Afton"

"Airmont"

"Akron"

"Alabama"

"Albany"

kind

"Town"

"Village"

"Town"

"Village"

"Town"

"Village"

"Village"

"Village"

"Town"

llcityll

pop-2010

5143

1775

2595

1763

2851

822

8628

2868

1869

97856

pop-2020

4973

1633

2397

1561

2769

794

10166

2888

1602

99224

Click to show the remaining_ 1517 rows...

municipalities.row-n(1)

"name"

"Adams"

"kind"

"Village"

"pop-2010"

1775

"pop-2020"

1633

municipalities

Nname

""Adams"

""Adams"

"Addison"

"Addison"

"Afton"

"Afton"

"Airmont"

"Akron"

"Alabama"

"Albany"

kind

"Town"

"Village"

"Town"

"Village"

"Town"

"Village"

"Village"

"Village"

"Town"

llcityll

pop-2010

5143

1775

2595

1763

2851

822

8628

2868

1869

97856

pop-2020

4973

1633

2397

1561

2769

794

10166

2888

1602

99224

Click to show the remaining_ 1517 rows...

municipalities.row-n(2)

"name"

"Addison™

"kind"

"Town"

"pop-2010"

2595

"pop-2020"

2397

To get a particular column’s value from a row,
we specify the column name using square

brackets:
(fOW)["column name"]

municipalities.row-n(0)

""name” "Adams" "Kind" "Town" "pop-2010" 5143 "pop-2020" 4973

municipalities.row-n(0)

"name" "Adams" "kKind" "Town" "pop-2010" 5143 "pop-2020" 4973

municipalities.row-n(0)[' name”
"Adams”

municipalities.row-n(0)['pop-2020"]
4973

Recap: Ordering tables

To do more with tabular data, first include the

textbook library:

shared-gdrive("dcic-2021",
"1wyQZj LOqgqV9Ekgr9aubRX2iqt2Ga8Ep")

We can transform tabular data to get a
particular view. E.g., to order the rows from the

highest 2020 population to the lowest:
order-by(municipalities, "pop-2020",)

name kind pop-2010 pop-2020
"New York" "City" 8175133 8804190
"Hempstead" "Town™ 7159757 793409
"Brookhaven™ "Town" 486040 485773
"Islip" "Town" 335543 339938
"Oyster Bay" "Town" 293214 301332
"Buffalo" "City" 261310 278349
"North Hempstead" "Town" 226322 237639

We can transform tabular data to get a
particular view. E.a__to order the rd lowest)m the

highest 2020 poy M9"e

St

order-by(murmcrpantdes, "pop-2020",

name kind

""Red House" '

"Dering Harbor"

"Morehouse"

"Montague”

"Clare"

"Saltaire"

"West Hampton Dunes™

Town"

"Village"

"Town"

"Town"

"Town"

"Village"

“"Village"

pop-2010

38

11

86

78

105

37

55

N to the lowest:

)

pop-—-2020
27

50

92

97

100

113

126

true

municipalities.row-n(0)

"name" "Adams" "kind" "Town" "pop-2010" 5143 "pop-2020" 4973

order-by(municipalities, "pop-2020",).row-n(0)

"name" "New York" "kind" "City" "pop-2010" 8175133 "pop-2020" 8804190

municipalities.row-n(0)

"name" "Adams" "kind" "Town" "pop-2010" 5143 "pop-2020" 4973

order-by(municipalities, "pop-2020",).row-n(0)

"name" "New York" "kind" "City" "pop-2010" 8175133 "pop-2020" 8804190
ordered = order-by(municipalities, "pop-2020",)
ordered.row-n(0)

"name" "New York" "kind" "City" "pop-2010" 8175133 "pop-2020" 8804190

ordered = order-by(municipalities, "pop-2020",)
biggest = ordered.row-n(0)
biggest["'pop-2020"]

8175133

Recap: Filtering tables

We can use filter-with t0 get just the towns:

is-town(r :: Row) -> Boolean:
: "Check if a row is for a town"
r["kind"] == "Town"

filter-with(municipalities, is-town)

Or we could mke a table keeping only those

municipalities with a population over 10,000:
big-muni(r :: Row) -> Boolean:
: "Return true if the municipality had over 10,000 people had in 2020"
r["pop-2020"] > 10000

filter-with(municipalities, big-muni)

name kind pop—-2010 pop—-2020
"Airmont" "Village" 8628 10166
"Albany" "City" 97856 99224

"Amherst" "Town" 122366 129595

[| . T I —— N | B~ " 5 11 S alt ahas T O™ M ™

Exercise

PROBLEM Figure out what the fastest-growing
towns are in New York.

Subtasks:

Filtering to just towns

Calculating percentage change in population
Building a column for percentage change

Sorting on that column In descending order

Subtasks:

Filtering to just towns

towns = filter-with(municipalities, is-town)

Subtasks:

Calculating percentage change in population

towns = filter-with(municipalities, is-town)

percent-change(r :: Row) -> Number:
. "Compute the percentage change for the population of a municipality
between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]
end

We can write a function that takes a row
as Input and returns any kind of value,
not just a Boolean.

Subtasks:

Building a column for percentage change

towns = filter-with(municipalities, is-town)

percent-change(r :: Row) -> Number:
. "Compute the percentage change for the population of a municipality
between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]
end

towns-with-percent-change =

build-column(townsg, "percent-change”,
percent-change) Name of the new column

\Name of the function to use

Subtasks:

Sorting on that column In descending order

towns = filter-with(municipalities, is-town)

percent-change(r :: Row) -> Number:
. "Compute the percentage change for the population of a municipality
between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]
end

towns-with-percent-change =
build-column(towns, "percent-change”,
percent-change)

fastest-growing-towns =
order-by(towns-with-percent-change,

"percent-change", false)

fastest-growing-towns

Review: Building a column

So, If we have this table, t,

a b
Ildogll 2
llcatll 3

then the result of calling build-column(t, "c", builder) IS:

a b C

"dog" 2 builder(<"dog", 2>)

"cat" 3 builder(<"cat", 3>)

For example, If we have

builder(r :: Row) -> Number:
string-length(row["a"]) + row["b"]

Then we end up with the following table:
a b C

Ildogll 2 5

"cat" 3 6

The values that the builder function returns will
be the values in the new column that we're
adding to each row.

build-column ::
(t :: Table,
colname :: String,

builder:: (Row >A)_

-> Tabl
e %<at’s argument?

This is the second time we’ve seen a function
that takes a function as one of Its Inputs!

Both filter-with and build-column Need a helper
function that tells them how to do what we
want.

Just as a function Is an abstraction over specific computations,
filter-with @Nd build-column are abstractions over more specific
functions.

They provide the common functionality and the arguments we
give provide the specifics.

Interlude: Functional programming

We can

sort the rows a table with order-with,

select certain rows using filter-with, and

add a new column of values with build-column

but none of these functions change the original
table!

Just as the expression 2 +3 doesn’'t change the
value of 2 or of 3, functions that take a table as
iInput don't change the original table.

Instead, they return a new table.

This Is a paradigm called functional
programming.

If you have experience working in other languages, this may
seem strange, but it can be extremely useful!

We'll explore the idea of functional programming more in the
coming weeks.

Loading Google Sheets into Pyret

We've seen that it's inconvenient to type a
large table into a Pyret program. Last time, we
loaded the municipalities table from a separate
Pyret file that | prepared ahead of time.

It's more usual to load a large data set from
outside of Pyret.

00 (< docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRIUC-_SaVkBWf1s & ala

New York municipalities < > o~ E
File Edit View Insert Format Data Tools Extensions Help Last edit was seconds ago
~ ~ @ P 100% v $§ % .0 .00 123v Default(Ari.. v 11 ~ B I S i ¢ H =~ 1l~vJolv ¥ i
Al v Municipality
A B C D

i |Municipality lCIass 2010 2020

2 Adams Town 5,143 4,973

3 Adams Village 1,775 1,633

4 Addison Town 2,595 2,397

5 | Addison Village 1,763 1,561

6 Afton Town 2,851 2,769

7 Afton Village 822 794

8 Airmont Village 8,628 10,166

9 Akron Village 2,868 2,888

10 Alabama Town 1,869 1,602

11 Albany City 97,856 99,224

12 Albion Town 8,468 7,639

13 Albion Town 2,073 2,009

14 Albion Village 6,056 5,637

15 Alden Town 10,865 9,706

16 Alden Village 2,605 2,604

17 Alexander Town 2,534 2,491

18 Alexander Village 509 518

19 Alexandria Town 4,061 3,741

20 Alexandria Bay Village 1,078 924

21 Alfred Town 5,237 5,157

22 Alfred Village 4,174 4,026

23 Allegany Town 8,004 7,493

24 Allegany Village 1,816 1,544

+ = municipalities ~ ng Explore <

https://docs.google.com/spreadsheets/d/1DU-4daAJsHVRybRlUC-_SaVkBWf1sOaGIfrWfgktlIs/edit?usp=sharing

gdrive-sheets

The ID of the Google Sheets file, which appears

#in the URL
ssid = "1DU-4daAJsHVRybRIUC- SaVkBWf1sOaGIlfrWifgktlls"

spreadsheet = load-spreadsheet(ssid)

A spreadsheet might have more than one
sheet (the tabs at the bottom of Google

Sheets). But, In this case, we just have one:

spreadsheet
spreadsheet("municipalities")

To load a table from a spreadsheet, we need to
tell Pyret which sheet to load it from and what
we want the columns to be called (which can
be different from what Is In the spreadsheet):

municipalities =
name, kind, pop-2010, pop-2020

spreadsheet.sheet-by-name("municipalities”,

=4
Jh<means there’s a header row that Pyret should skip

Using our table loaded from Google Sheets,
let’s revisit our code from earlier for finding the
fastest-growing towns.

is-town(r :: Row) -> Boolean:
. "Check if a row is for a town"
r["kind"] == "Town"

percent-change(r :: Row) -> Number:
. "Compute the percentage change for the population of a municipality between 2010
and 2020"
(r["'pop-2020"] - r["'pop-2010"]) / r["pop-2010"]

towns = filter-with(municipalities, is-town)

towns-with-percent-change =
build-column(towns, "percent-change", percent-change)

fastest-growing-towns = Let|s take these

order-by(towns-with-percent-change, looge express_mns
"percent-change",) put them In a

fastest-growing-towns

is-town(r :: Row) -> Boolean:
. "Check if a row is for a town"
r["kind"] == "Town"

percent-change(r :: Row) -> Number:
. "Compute the percentage change for the population of a municipality between 2010
and 2020"
(r["'pop-2020"] - r["'pop-2010"]) / r["pop-2010"]

fastest-growing-towns(munis :: Table) -> Table:
: "Return a table of towns ordered by their growth"
towns = filter-with(munis, is-town)

towns-with-percent-change =
build-column(towns, "percent-change”, percent-change)

order-by(towns-with-percent-change, "percent-change”, false)

We've done a bit of a bad thing here: We've
written three functions, but we don’t have tests
for any of them!

Let’'s see how we can rectify this.

Testing table functions

We can test table program by using test tables.

These are tables that have the same structure
as the table for our real data, but which are

smaller and contain data that are useful for
testing.

test-munis =
: name, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
. "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99
. "Hobbiton", "Village", 50, 54

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
. "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99
. "Hobbiton", "Village", 50, 54

Let's see how we use these test data to write
examples for our table functions.

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
. "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99

: "Hobbiton", "Village", 50, 54

is-town(r :: Row) -> Boolean:
. "Check if arow is for a town"

r["kind"] == "Town"

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
. "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99
: "Hobbiton", "Village", 50, 54

is-town(r :: Row) -> Boolean:
. "Check if arow is for a town"

r["kind"] == "Town"

is-town(test-munis.row-n(0))
is-town(test-munis.row-n(1))

is-town(test-munis.row-n(3))

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
: "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99
: "Hobbiton", "Village", 50, 54

percent-change(r :: Row) -> Number:
: "Compute the percentage change for the population of a municipality between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
. "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99

: "Hobbiton", "Village", 50, 54

percent-change(r :: Row) -> Number:
: "Compute the percentage change for the population of a municipality between 2010 and 2020"
(r["'pop-2020"] - r["pop-2010"]) / r["pop-2010"]

percent-change(test-munis.row-n(0)) is 0.01

percent-change(test-munis.row-n(1)) is 0.02

percent-change(test-munis.row-n(2)) is -0.01

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
: "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99
: "Hobbiton", "Village", 50, 54

fastest-growing-towns(munis :: Table) -> Table:

: "Return a table of towns ordered by their growth"
towns = filter-with(munis, is-town)
towns-with-percent-change =

build-column(towns, "percent-change", percent-change)

order-by(towns-with-percent-change, "percent-change”,

test-munis =
: hame, kind, pop-2010, pop-2020
. "Osgiliath”, "City", 100, 101
. "Lake-town", "Town", 100, 102
: "Bree"”, "Town", 100, 99

: "Hobbiton", "Village", 50, 54

fastest-growing-towns(munis :: Table) -> Table:

test-munis-after =
: hame, kind, pop-2010, pop-2020, percent-change
: "Lake-town", "Town", 100, 102, 0.02
: "Bree", "Town", 100, 99, -0.01

fastest-growing-towns(test-munis) is test-munis-after

Don’t just copy the
function’s output; think
through what it’s
supposed to do!

Visualization

Data scientists use plots for both exploratory
and explanatory purposes — they are useful for
understanding data In preparation for further
analysis and In presenting data to a general

audience.

The dcic-2021 library we've been using to work
with tables includes several functions to
generate different kinds of plots like the ones
we’'ve talked about.

How is population distributed in the state?
pie-chart(municipalities, "name", "pop-2020")

@ Albany

@ Amherst

@ Babylon

() Bethlehem
@ Binghamton
@ Brighton

() Brookhaven
@ Buffalo

® Carmel

(" Cheektowaga
@ Cicero

@ Clarence

@ Clarkstown

Mew York
8,804,190 (39.9%) 16 W

ft = fastest-growing-towns(municipalities)

its population in 2020°?
scatter-plot(ft, "pop-2010", "pop-2020")

Is a town's population in 2010 correlated with

700,000

600,000

500,000

400,000

pop-2020

300,000 °
200,000 [

100,000

200,000

400,000

pop-2010

600,000

ft = fastest-growing-towns(municipalities)

Visually present the growth data

bar-chart(ft, 'name", "percent-change")

0.6

0.4

0.2

...didn’t any
nm towns
shrink?

0.0

percent-change

-0.2

-0.4

ft = fastest-growing-towns(municipalities)

Visually present the growth data
bar-chart(ft, 'name", "percent-change")

0.6
0.4
o 0.2
(®))
% I
.5 00 ‘HHm“m‘m“‘“HHmHm“m‘“|"|||""|||""l||||""l|I"l||"l""l"""l""l||||"||||||||||||||||||||IIIIIIIII||||||||||||||||||||||||||||||| ...
E e SSSS”TTBEBEREREEEEEEEEEEETRR———-———————...- LU T T LR LR it
4b)
5
= -0.2
-0.4
-0.6
P O O 0T (020 4B o8 @® 0™ o (@0 (3P 4e® (O O o (0P O B (OO 0P (P W o e
Qe e WV o™ B€7 e 2970 @ ot AR 2" 1o 02" (027 T e pe NN I S
S ?@{\ \)\6((\.@ e\ﬂ% N & o) \ﬁ \fe 0(\0 \A ?‘\ CI‘ 6@1\6 G‘\e \‘\\\0\?\- 'S

ft = fastest-growing-towns(municipalities)

Visually present the growth data

bar-chart(ft, 'name"”, "pop-2020")

pop-2020

800,000
700,000
600,000
500,000
400,000

300,000

200,000
100,000

) Ll

|1 ||] ||I||I. |Il ||II|‘|| I||| || I|I|| Ll lig

Ll

%’-.;T'L

08 2 Aot

Bl

e
c©

o

Pyret code from class:
https://tinyurl.com/101-2023-02-01

https://tinyurl.com/101-2023-02-01

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University
Doug Woos, Brown University

	Slide 1: Working with Tables
	Slide 2
	Slide 3: Where are we?
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Recap: Accessing parts of a table
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Recap: Ordering tables
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Recap: Filtering tables
	Slide 23
	Slide 24
	Slide 25: Exercise
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Review: Building a column
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Interlude: Functional programming
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Loading Google Sheets into Pyret
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Testing table functions
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Visualization
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Acknowledgments

