
Tables and Lists

8 February 2023

CMPU 101 § 54 · Computer Science I

Where are we?
(SEA, then NY, I believe)

Tables!

Rows!

How do I get just

this row from

stats?

stats =

n

0

1

2

3

4

5

6

7

8

9

stats.row-n(2)

How do I get just

this row from

stats?

stats =

How do I get just

the rows for

players who are

guards?

How do I get just

the rows for

players who are

guards?

fun is-guard(player :: Row)
-> Boolean:
doc: "Return true if the player's primary position is

guard"
player["pos"] == "G"

where:
is-guard(t.row-n(0)) is false
is-guard(t.row-n(1)) is true

end

filter-with(stats,
is-guard)

How do I get just

the rows for

players who are

guards?

filter-with(stats,
lam(player):
player["pos"] == "G"

end)

fun is-guard(player :: Row)
-> Boolean:
doc: "Return true if the player's primary position is

guard"
player["pos"] == "G"

where:
is-guard(t.row-n(0)) is false
is-guard(t.row-n(1)) is true

end

filter-with(stats, lam(player): player["pos"] == "G" end)

This is the only place we want to use this helper

function, so there’s no need to name it,

document it, etc.

We can write less code (!) with a lambda

expression.

PL’s rule of Lazy Programming: programmers will invent ways to avoid

writing verbose code.

Corollary: A coding solution that allows us to write less code and is

functionally equivalent to a solution that requires us to write more code

is the preferred solution

What about columns?

How can I add

a new column

like this?

frequent-player

"very"

"very"

"no"

"very"

"somewhat"

"somewhat"

"very"

"no"

"very"

"very"

How can I add

a new column

like this?

frequent-player

"very"

"very"

"no"

"very"

"somewhat"

"somewhat"

"very"

"no"

"very"

"very"

build-column(stats, "frequent-player", how-frequent)

Although we’ll only use this function

here, it’ll be too long to conveniently

write as a lambda expression.

frequent-player

"very"

"very"

"no"

"very"

"somewhat"

"somewhat"

"very"

"no"

"very"

"very"

fun how-frequent(player :: Row)
-> String:
if player["games"] >= 20:

"very"
else if player["games"] >= 10:
"somewhat"

else:
"no"

end
end

build-column(stats, "frequent-player", how-frequent)

Be sure to add a

docstring and where

block to make this

definition complete!

Changing a column

So, we’ve seen that we can build a new

column based on the values in each row, but

what if we just want to change an existing

column?

A fake WNBA fan like

me can’t remember

what these team

abbreviations stand for.

Let’s fill in the actual

team names.

What are the team names?

CHI

CON

DAL

LVA

ATL

PHO

SEA WAS

MIN IND

NYL

LAS

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
...

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

Use this as a template:

• Start with (grey) keywords

• Fill in fun: I/O (input/output), etc.

• Fill in doc: with something descriptive

• Use ellipses for code (TBD)

• Think of tests to write in where: clause

(to help us write the actual function code)

• Don’t forget to end the function

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
...

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

Use this as a template:

• Start with (grey) keywords

• Fill in fun: I/O (input/output), etc.

• Fill in doc: with something descriptive

• Use ellipses for code (TBD)

• Think of tests to write in where: clause

(to help us write the actual function code)

• Don’t forget to end the function

(I don’t have to write “return type”, just “->”)

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
if abbr == "DAL": "Dallas Wings"
else if abbr == "LVA": "Las Vegas Aces"
...
end

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

This will work, but remember

what we said when we

introduced tables for looking

up population: We want to

separate data from

computation.

teams =
table: abbr, name
row: "DAL", "Dallas Wings"
row: "LVA", "Las Vegas Aces"
row: "LAS", "Los Angeles Sparks"
row: "MIN", "Minnesota Lynx"
row: "PHO", "Phoenix Mercury"
row: "SEA", "Seattle Storm"
row: "ATL", "Atlanta Dream"
row: "CHI", "Chicago Sky"
row: "CON", "Connecticut Sun"
row: "IND", "Indiana Fever"
row: "NYL", "New York Liberty"
row: "WAS", "Washington Mystics"

end

Let’s use this new table

we are calling teams!

Advantage: This makes it

easy to add new teams or

more information about

these teams, in a central

place.

teams = ...

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
Get the row with abbreviation `abbr`
Return the value in the `name` column

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

teams = ...

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
matches =
filter-with(teams, lam(r): r["abbr"] == abbr end)

team = matches.row-n(0)
Return the value in the `name` column

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

teams = ...

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
matches =
filter-with(teams, lam(r): r["abbr"] == abbr end)

team = matches.row-n(0)
team["name"]

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

teams = ...

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
matches =
filter-with(teams, lam(r): r["abbr"] == abbr end)

team = matches.row-n(0)
team["name"]

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

transform-column(stats, "team", team-name)

teams = ...

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
matches =
filter-with(teams, lam(r): r["abbr"] == abbr end)

team = matches.row-n(0)
team["name"]

where:
team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"
...

end

transform-column(stats, "team", team-name)

0 is too big? That means

there were no matching

rows! An abbreviation

not in our table. What is it?

teams = ...

fun team-name(abbr :: String) -> String:
doc: "Return the name of the team with the given abbreviation"
matches =
filter-with(teams, lam(r): r["abbr"] == abbr end)

if matches.length() == 0:
abbr

else:
team = matches.row-n(0)
team["name"]

end
where:

...
end

transform-column(stats, "team", team-name)

Total? Players who

played for more than

one team?

What’s a column anyway?

We’ve seen that when you want a row of a

table, you use .row-n and get a Row.

What about getting a column?

How do I get just

the points

column?

stats =

stats =

stats.column("pts")

How do I get just

the points

column?

››› stats.get-column("pts")
[list: 116, 74, 60, 174, 35, ...]

The data type isn’t Column; it’s List!

A List is an ordered sequence of data.

For example,
grades = [list: 0.96, 0.73, 1.0, 0.5]

fellowship = [list:
"Frodo", "Sam", "Merry", "Pippin", "Gandalf",
"Legolas", "Gimli", "Aragorn", "Boromir"

]

So, what good is a List?

Mad Libs!

Thousands of Plural-Noun ago, there were calendars

that enabled the ancient Plural-Noun to divide a year into

twelve Plural-Noun, each month into Number weeks, and

each week into seven Plural-Noun. At first, people told

time by a sun clock, sometimes known as the Noun dial.

Ultimately, they invented the great timekeeping devices

of today, such as the grandfather Noun, the pocket

Noun, the alarm Noun, and, of course, the Body-Part

watch. Children learn about clocks and time almost

before they learn their A-B- Alphabet-Letter s. They are

taught that a day consists of 24 Plural-Noun, an hour has

60 Plural-Noun, and a minute has 60 Plural-Noun. By the

time they are in Kindergarten, they know if the big Body-

Part is at twelve and the little Body-Part is at three, that it

is Number o’clock. I wish we could continue this

Adjective lesson, but we’ve run out of Noun.

Thousands of Plural-Noun ago, there were calendars

that enabled the ancient Plural-Noun to divide a year into

twelve Plural-Noun, each month into Number weeks, and

each week into seven Plural-Noun. At first, people told

time by a sun clock, sometimes known as the Noun dial.

Ultimately, they invented the great timekeeping devices

of today, such as the grandfather Noun, the pocket

Noun, the alarm Noun, and, of course, the Body-Part

watch. Children learn about clocks and time almost

before they learn their A-B- Alphabet-Letter s. They are

taught that a day consists of 24 Plural-Noun, an hour has

60 Plural-Noun, and a minute has 60 Plural-Noun. By the

time they are in Kindergarten, they know if the big Body-

Part is at twelve and the little Body-Part is at three, that it

is Number o’clock. I wish we could continue this

Adjective lesson, but we’ve run out of Noun.

How can we represent a text?

template = "Thousands of Plural-Noun ago, there were calendars that enabled the ancient Plural-Noun to divide a

year into twelve Plural-Noun , each month into Number weeks, and each week into seven Plural-Noun . At first,

people told time by a sun clock, sometimes known as the Noun dial. Ultimately, they invented the great timekeeping

devices of today, such as the grandfather Noun , the pocket Noun , the alarm Noun , and, of course, the Body-Part

watch. Children learn about clocks and time almost before they learn their A-B- Alphabet-Letter s. They are taught

that a day consists of 24 Plural-Noun , an hour has 60 Plural-Noun , and a minute has 60 Plural-Noun . By the time

they are in Kindergarten, they know if the big Body-Part is at twelve and the little Body-Part is at three, that it is

Number o'clock. I wish we could continue this Adjective lesson, but we’ve run out of Noun ."

template = "Thousands of Plural-Noun ago, ..."

template-words = string-split-all(template, " ")

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

template = "Thousands of Plural-Noun ago, ..."

template-words = string-split-all(template, " ")

››› template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

We need to substitute a random plural noun here!

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

Needs a helper function!

"Thousands of Plural-Noun ago, ..."

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

[list: "Thousands", "of", "gazebos", "ago", ...]

string-split-all

Something like transform-column but for lists

substitute-word

"Thousands" -> "Thousands"

"Plural-Noun" -> "gazebos"

using

I’d write the helper function first!

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is ...

end

Uh oh! We don’t know what

particular word it will be!

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun"

end

We know what it isn’t!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun"
plural-nouns.member(
substitute-word("Plural-Noun"))
is true

end And we know it’s one of the right choices!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
...

where:
substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") is-not "Plural-Noun"
plural-nouns.member(
substitute-word("Plural-Noun"))
is true

end

The left part of an example can be any expression!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
...

else:
w

end
where:

...
end

We need a random element of a list.

Time to check the Pyret documentation!

https://www.pyret.org/docs/latest/numbers.html(part._.Random_.Numbers)

We didn’t find a built-in way to get a random

element of a list, but we found a way to get a

random number.

How could we use this?

https://www.pyret.org/docs/latest/lists.html(part._lists_.List_shared._methods_get)

With a table, we could use .row-n to get a

specific row by its index number.

With a list, we can use .get to get an item.

Get a random number

Get then list element positioned at that number

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
rand = num-random(3)
plural-nouns.get(rand)

else:
w

end
where:

...
end

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
rand = num-random(3)
plural-nouns.get(rand)

else:
w

end
where:

...
end

plural-nouns = [list: "gazebos", "avocados", "pandas",
"quokkas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
rand = num-random(3)
plural-nouns.get(rand)

else:
w

end
where:

...
end

plural-nouns = [list: "gazebos", "avocados", "pandas",
"quokkas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
rand = num-random(length(plural-nouns))
plural-nouns.get(rand)

else:
w

end
where:

...
end

template = "Thousands of Plural-Noun ago, there were calendars that enabled the ancient Plural-Noun to divide a

year into twelve Plural-Noun , each month into Number weeks, and each week into seven Plural-Noun . At first,

people told time by a sun clock, sometimes known as the Noun dial. Ultimately, they invented the great timekeeping

devices of today, such as the grandfather Noun, the pocket Noun , the alarm Noun , and, of course, the Body-Part

watch. Children learn about clocks and time almost before they learn their A-B- Alphabet-Letter s. They are taught

that a day consists of 24 Plural-Noun , an hour has 60 Plural-Noun , and a minute has 60 Plural-Noun . By the time

they are in Kindergarten, they know if the big Body-Part is at twelve and the little Body-Part is at three, that it is

Number o'clock. I wish we could continue this Adjective lesson, but we’ve run out of Noun ."

plural-nouns =
[list: "gazebos", "avocados", "pandas", "quokkas"]

numbers =
[list: "-1", "42", "a billion"]

nouns =
[list: "apple", "computer", "borscht"]

body-parts =
[list: "elbow", "head", "spleen"]

alphabet-letters =
[list: "A", "C", "Z"]

adjectives =
[list: "funky", "boring"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
rand = num-random(length(plural-nouns))
plural-nouns.get(rand)

else if w == "Number":
rand = ...

else:
w

end
where:

...
end

Don’t repeat yourself!

fun rand-word(l :: List<String>) -> String:
doc: "Return a random word in the given list"
rand = num-random(length(l))
l.get(rand)

where:
plural-nouns.member(rand-word(plural-nouns)) is true
numbers.member(rand-word(numbers)) is true

end

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
if w == "Plural-Noun":
rand-word(plural-nouns)

else if w == "Number":
rand-word(numbers)

else if w == "Noun":
rand-word(nouns)

else if w == "Body-Part":
rand-word(body-parts)

else if w == "Alphabet-Letter":
rand-word(alphabet-letters)

else if w == "Adjective":
rand-word(adjectives)

else:
w

end
end

This is still a bit repetitious –

but it’s good enough for

today!

Go back to the task plan.

We’ve completed our helper, and now we need

to

split the input into words

run the helper on every word in the list

Similar to how transform-column runs a function on every row

of a table.

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
...

end

Go back to the task plan.

We’ve completed our helper, and now we need

to

split the input into words

run the helper on every word in the list

Similar to how transform-column runs a function on every row

of a table.

This is called map!

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
map(substitute-word, t)
...

end

Go back to the task plan.

We’ve completed our helper, and now we need

to

split the input into words

run the helper on every word in the list

Similar to how transform-column runs a function on every row

of a table.

Ok – are we done?

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
map(substitute-word, t)
...

end

This gives us a list of strings. How can we join it back into a single string?

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
words-sub = map(substitute-word, words)
join-str(with-sub, " ")

end

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
words-sub = map(substitute-word, t)
join-str(words-sub, " ")

where:
...

end

What do we know is true about the output?

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
words-sub = map(substitute-word, t)
join-str(words-sub, " ")

where:
mad-libs(template) is-not template

end

fun mad-libs(t :: String) -> String:
doc: "Randomly fill in the blanks in the mad libs template"
words = string-split-all(t, " ")
words-sub = map(substitute-word, t)
join-str(words-sub, " ")

where:
mad-libs(template) is-not template
string-contains(mad-libs(template), "Plural-Noun")
is false

end

Preview: Lists and recursion

What if join-str didn’t already exist for our

convenience?

To write a function that processes a list

element by element, we need to understand

the real nature of lists.

A list consists of two parts: a first element and

the rest of the list.
››› l = [list: 1, 2, 3]
››› l.first
1
››› l.rest
[list: 2, 3]

The first element is linked to the rest and so on

until we reach the empty list:
››› link(1, empty)
[list: 1]
››› link(1, link(2, link(3, empty)))
[list: 1, 2, 3]

When we write a function that recursively

processes a list, we deal with these two cases

– linking an element or being empty:
fun add-nums(l :: List<Number>) -> Number:

cases (List) l:
| empty => 0
| link(f, r) => f + add-nums(r)

end
where:

add-nums([list:]) is 0
add-nums([list: 1]) is 1 + 0
add-nums([list: 2, 1]) is 2 + 1 + 0

end

In the case of joining strings, we need to know

not just if the current list is empty but is the rest

of the rest empty. This is how we know

whether to add a space or not.

fun join-with-spaces(l :: List<String>) -> String:

doc: "Join the strings in l with a space between each one"

cases (List) l:

| empty => ""

| link(f, r) =>

cases (List) r:

| empty => f

| link(fr, rr) =>

f + " " + join-with-spaces(r)

end

end

where:

join-with-spaces([list:]) is ""

join-with-spaces([list: "y"]) is "y" + ""

join-with-spaces([list: "x", "y"]) is "x" + " " + "y" + ""

end

Class code:

https://code.pyret.org/editor#share=1pl3aebeS704fGGlxGh

Sc-NNFaQCBE9On&v=4f2ac8e

https://code.pyret.org/editor#share=1pl3aebeS704fGGlxGhSc-NNFaQCBE9On&v=4f2ac8e
https://code.pyret.org/editor#share=1pl3aebeS704fGGlxGhSc-NNFaQCBE9On&v=4f2ac8e

	Slide 1: Tables and Lists
	Slide 2: Where are we? (SEA, then NY, I believe)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Changing a column
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: What’s a column anyway?
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 42: Mad Libs!
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Preview: Lists and recursion
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

