CMPU 101 §54 - Computer Science |

Tables and Lists

8 February 2023

Where are we?

(SEA, then NY, | believe)

player
""Natalie Achonwa"
"Julie Allemand"

"Lindsay Allen"

'""Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

i PHOII

IIWASII

i LASII

IIWASII

IIMINII

pos

] FII

IIGII

IIGII

IIGII

IIGII

i F_CII

IIGII

i FII

IIC_FII

IIGII 36

Click to show the remaining 188 rows...

Tables!

player

"Natalie Achonwa'

"Julie Allemand"

"Lindsay Allen"

"Rebecca Allen"

"Yvonne Anderson'

"Kristine Anigwe"
"Ariel Atkins"

"Amy Atwell"

"Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

] | PHOII

IIWASII

]| LASII

IIWASII

IIMINII

pos

games

Click to show the remaining 188 rows...

pts

Rows!

stats =

player

"Natalie Achonwa'

"Julie Allemand"

"Lindsay Allen"

"Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"'Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

] | PHOII

IIWASII

]| LASII

IIWASII

IIMINII

pos

] | FII

IIGII

IIGII

IIGII

] | F_cll

IIGII

IIFII

"C—F"

IIGII

games

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

pts

116

74

174

35

15

527

312

283

How do | get just
this row from
stats?

stats =

-

O O ~l o O1 SN w N = -

player

"Natalie Achonwa"

"Julie Allemand"

"Lindsay Allen"

"Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"'Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

] | PHOII

IIWASII

]| LASII

IIWASII

IIMINII

pos

IIFII

IIGII

IIGII

IIGII

] | F_CII

IIGII

IIFII

"C—F"

IIGII

games

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

pts

116

74

174

35

15

527

312

283

How do | get just
this row from
stats?

stats.row-n(2)

player

""Natalie Achonwa'

"Julie Allemand"

"Lindsay Allen"

'""Rebecca Allen"

"Yvonne Anderson'

"Kristine Anigwe’

"Ariel Atkins"

"Amy Atwell"

"Shakira Austin"

""Rachel Banham"

team DOS games pts
"MIN" nEn 22 116
"CHI"

"MIN"

"NYL"

"CON"

"PHO" "F-C" 10 15
"WAS"

"LAS" “F" 4 :
"WAS" "C-F" 36 312

IIMINII

Click to show the remaining 188 rows...

How do | get just
the rows for
players who are
guards?

player team pos
"Natalie Achonwa" "MIN" "F"
"Julie Allemand" "CHI" "G
"Lindsay Allen" "MIN" "G"

is-guard(player :: Row)
-> Boolean:
. "Return true if the player's primary position is
guard”
player["pos”] == "G"

is-guard(t.row-n(0))
is-guard(t.row-n(1))

ga

22

25

mes pts
116

74

60

filter-with(stats,
is-guard)

How do | get just
the rows for
players who are
guards?

player team pos
"Natalie Achonwa" "MIN" "F"
"Julie Allemand" "CHI" "G
"Lindsay Allen" "MIN" "G"

is-guard(player :: Row)
-> Boolean:
. "Return true if the player's primary position is
guard”
player["pos”] == "G"

is-guard(t.row-n(0))
is-guard(t.row-n(1))

games pts
22 116
25 74
9 60

filter-with(stats,
(player):

I—

How do | get just
the rows for
players who are
guards?

player[llposll] —— IIGII

)

PL’s rule of Lazy Programming: programmers will invent ways to avoid
writing verbose code.

Corollary: A coding solution that allows us to write less code and Is

functionally equivalent to a solution that requires us to write more code
IS the preferred solution

This Is the only place we want to use this helper
function, so there’s no need to name It
document It, etc.

We can write less code (!) with a lambda
expression.

filter-with(stats (player): player['pos"] == "G" |

player
"Natalie Achonwa"

"Julie Allemand"

"Lindsay Allen"

'""Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"'Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

i PHOII

IIWASII

i LASII

IIWASII

IIMINII

pos

] FII

IIGII

IIGII

IIGII

IIGII

i F_CII

IIGII

i FII

IIC_FII

IIGII

games

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

pts

116

74

60

174

35

15

527

312

283

player

""Natalie Achonwa'

"Julie Allemand"

"Lindsay Allen"

'""Rebecca Allen"

"Yvonne Anderson'

"Kristine Anigwe’

"Ariel Atkins"

"Amy Atwell"

"Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

i PHOII

IIWASII

i LASII

IIWASII

IIMINII

pos

] FII

IIGII

IIGII

IIGII

IIGII

i F_CII

IIGII

i FII

IIC_FII

IIGII

games

Click to show the remaining 188 rows...

What about columns?

How can | add
a new column
like this?

player

"Natalie Achonwa"
"Julie Allemand"
"Lindsay Allen"
"Rebecca Allen"
"Yvonne Anderson"
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

i PHOII

IIWASII

i LASII

IIWASII

IIMINII

pos

i FII

IIGII

IIGII

IIGII

IIGII

i F_CII

IIGII

i FII

"C—-F"

IIGII

games

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

pts

116

74

60

174

35

15

527

312

283

frequent-player

Ilveryll

Ilveryll

Nno

Ilveryll

"'somewhat

"somewhat"
"very"

"o"

"very"

Ilveryll

player team pos games pts frequeﬂt-p|ayer

"Natalie Achonwa" "MIN" "F" 22 116 "very"
"Julie Allemand" "CHI" "G" 25 74 "very"
"Lindsay Allen" "MIN" "G" 9 60 "no"
"Rebecca Allen" "NYL" "G" 25 174

How can | add
a new column
like this?

Although we’ll only use this function
here, it'll be too long to conveniently
write as a lambda expression.

build-column(stats, "frequent-player”) how-frequent)

player team pos
"Natalie Achonwa" "MIN" "F"
"Julie Allemand" "CHI" "G"
"Lindsay Allen" "MIN" "G"

how-frequent(player :: Row)

-> String:
player["'games"] >= 20:
"very"
player]|] >=10:
"somewhat"
"o"

build-column(stats, "frequent-player”, how-frequent)

games

22

25

25

11

ots frequent-player

116 "very"”
74 "very"
60 "no"
174

35

Be sure to add a
docstring and where
block to make this
definition complete!

Changing a column

S0, we've seen that we can build a new
column based on the values in each row, but
what If we just want to change an existing
column?

player
"Natalie Achonwa"

"Julie Allemand"

"Lindsay Allen"

'""Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"'Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

i PHOII

IIWASII

i LASII

IIWASII

IIMINII

pos

] FII

IIGII

IIGII

IIGII

IIGII

i F_CII

IIGII

i FII

IIC_FII

IIGII

games

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

pts

116

74

60

174

35

15

527

312

283

A fake WNBA fan like
me can’t remember
what these team
abbreviations stand for.

Let’s fill in the actual
team names.

What are the team names?

WESTERN EASTERN

R Dallas Wings

LVA % Las Vegas Aces

...:'l':.-.

New York Liberty

WAS

.'mugual Washington Mystics

team-name(abbr :: String) -> String:
: "Return the name of the team with the given abbreviation"

team-name('NYL") is "New York Liberty"

team-name("CHI") is "Chicago Sky" Use this as a template:

« Start with (grey) keywords
* Fill'in /O (Input/output), etc.

* Fill'in with something descriptive
* Use ellipses for code (TBD)
* Think of tests to write In clause

(to help us write the actual function code)
 Don't forgetto the function

team-name(abbr :: String) -> String:
. "Return the name of the team with the given abbreviation”

team-name("NYL") is "Néw York Liberty"

team_name(llCHlll) " hicagO Skyn USG thlS asS a template

« Start with (grey) keywords

* Fill'in /O (Input/output), etc.

* Fill'in with something descriptive
* Use ellipses for code (TBD)

* Think of tests to write In clause
(to help us write the actual function code)
* Don't forget to the function

(I don’t have to write “return type’, Just “=>"

team-name(abbr :: String) -> String:
: "Return the name of the team with the given abbreviation"
abbr =="DAL": "Dallas Wings"
abbr =="LVA": "Las Vegas Aces"

team-name('NYL") is "New York Liberty"
team-name("'CHI") is "Chicago Sky"

This will work, but remember
what we said when we
iIntroduced tables for looking
up population: We want to
separate data from
computation.

L et’s use this new table
we are calling teams!

table: abbr, name

rOw.
rOW.
rOwW.
rOw.
rOW.
rOwW.
rOw.
rOW.
rOw.
rOW.
rOwW.
rOw.

end

"DAL", "Dallas Wings"
"LVA", "Las Vegas Aces"
"LAS", "Los Angeles Sparks"
"MIN", "Minnesota Lynx"
"PHO", "Phoenix Mercury"
"SEA", "Seattle Storm"”
"ATL", "Atlanta Dream"
"CHI", "Chicago Sky"
"CON", "Connecticut Sun"
"IND", "Indiana Fever"

"NYL", "New York Liberty"

"WAS", "Washington Mystics"

Advantage: This makes It
easy to add new teams or
more Information about
these teams, In a central
place.

teams = ...

team-name(abbr :: String) -> String:
: "Return the name of the team with the given abbreviation"
Get the row with abbreviation abbr
Return the value in the name column

team-name("NYL") is "New York Liberty"
team-name("'CHI") is "Chicago Sky"

teams =...

team-name(abbr :: String) -> String:
. "Return the name of the team with the given abbreviation"
matches =
filter-with(teams, (r): r["abbr"] == abbr)
team = matches.row-n(0)
Return the value in the name column

team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"

teams =...

team-name(abbr :: String) -> String:
. "Return the name of the team with the given abbreviation"
matches =
filter-with(teames, (r): r["abbr"] == abbr)
team = matches.row-n(0)
team|['name”

team-name("NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"

teams =...

team-name(abbr :: String) -> String:
. "Return the name of the team with the given abbreviation"
matches =
filter-with(teames, (r): r["abbr"] == abbr)
team = matches.row-n(0)
team|["'name"]

team-name('NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"

transform-column(stats, "team”, team-name)

row-n-too-large

(Show program evaluation trace...)

teams =...

team-name(abbr :: String) -> String:

. "Return the name of the team with the given abbreviation"

matches =

filter-with(teames, (r): r["abbr"] == abbr)
team = matches.row-n(0)
team|["'name"]

team-name('NYL") is "New York Liberty"
team-name("CHI") is "Chicago Sky"

transform-column(stats, "team”, team-name)

O Is too big? That means
there were no matching
rows! An abbreviation

not In our table. What is it?

teams =...

team-name(abbr :: String) -> String:
. "Return the name of the team with the given abbreviation"
matches =
filter-with(teames, (r): r["abbr"] == abbr)
matches.length() == 0:
abbr

team = matches.row-n(0)
team|["'name’]

transform-column(stats, "team”, team-name)

"A']a Wilson"

"Han Xu"

"Jackie Young"

"Li Yueru"

"Emma Cannon™

"Tina Charles"

"Crystal Dangerfield"

"Kaela Davis"

"Rennia Davis"

“"AD Durr"

"Reshanda Gray"

"Las Vegas Aces” “F" 36
"New York Liberty" "C" 32
"Las Vegas Aces” Lty 34
"Chicago Sky" "C" 16
"TOT" "F" 24
"TOT" "C" 34
"TOT" "G" 33

i TUT]I

IITUTII

i1 TﬂT]l

IITﬂTII

Total? Players who
played for more than

one team?
T (o]
IIE]I 25
IIFII E?

703

273

542

28

164

502

180

34

10

174

59

What's a column anyway?

We've seen that when you want a row of a
table, you use .row-n and get a Row.

What about getting a column?

stats =

player
"Natalie Achonwa"
"Julie Allemand"

"Lindsay Allen"

"Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"'Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

] | PHOII

IIWASII

]| LASII

IIWASII

IIMINII

pos

] | FII

IIGII

IIGII

IIGII

IIGII

] | F_cll

IIGII

IIFII

"C—F"

IIGII

games pts

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

How do | get just
the points
column?

stats =

player
"Natalie Achonwa"
"Julie Allemand"

"Lindsay Allen"

"Rebecca Allen"

"Yvonne Anderson'
"Kristine Anigwe"
"Ariel Atkins"
"Amy Atwell"

"'Shakira Austin"

""Rachel Banham"

team

IIMINII

IICHIII

IIMINII

IINYLII

IICONII

] | PHOII

IIWASII

]| LASII

IIWASII

IIMINII

pos

] | FII

IIGII

IIGII

IIGII

IIGII

] | F_CII

IIGII

IIFII

"C—F"

IIGII

games pts

22

25

25

11

10

36

36

36

Click to show the remaining 188 rows...

How do | get just
the points
column?

stats.column("pts")

stats.get-column("pts")

o]

*he\data type isnt Column; it’s List!

A List Is an ordered sequence of data.

For example,
grades = [list: 0.96, 0.73, 1.0, 0.5]

fellowship = |
"Frodo", "Sam", "Merry", "Pippin", "Gandalf",

"Legolas”, "Gimli", "Aragorn”, "Boromir"

]

So, what good Is a List?

Mad Libs!

Plural-Noun

Plural-Noun
Plural-Noun Number
Plural-Noun
Noun
Noun
Noun Noun Body-Part
Alphabet-Letter
Plural-Noun
Plural-Noun Plural-Noun
Body-

Part Body-Part

Adjective Noun

Thousands of ago, there were calendars
that enabled the ancient to divide a year Into
twelve , each month into weeks, and
each week into seven . At first, people told
time by a sun clock, sometimes known as the dial.
Ultimately, they invented the great timekeeping devices
of today, such as the grandfather , the pocket

, the alarm , and, of course, the
watch. Children learn about clocks and time almost
before they learn their A-B- S. They are
taught that a day consists of 24 , an hour has
60 , and a minute has 60 . By the
time they are In Kindergarten, they know if the big

IS at twelve and the little IS at three, that It
IS Number o’clock. | wish we could continue this

lesson, but we’ve run out of

How can we represent a text?

template = "Thousands of Plural-Noun ago, there were calendars that enabled the ancient Plural-Noun to divide a
year into twelve Plural-Noun , each month into Number weeks, and each week into seven Plural-Noun . At first,
people told time by a sun clock, sometimes known as the Noun dial. Ultimately, they invented the great timekeeping
devices of today, such as the grandfather Noun, the pocket Noun , the alarm Noun , and, of course, the Body-Part
watch. Children learn about clocks and time almost before they learn their A-B- Alphabet-Letter s. They are taught
that a day consists of 24 Plural-Noun, an hour has 60 Plural-Noun , and a minute has 60 Plural-Noun . By the time

they are in Kindergarten, they know if the big Body-Part is at twelve and the little Body-Part is at three, that it is

Number o'clock. | wish we could continue this Adjective lesson, but we’ve run out of Noun ."

template = "Thousands of Plural-Noun ago, ..."

template-words = string-split-all(template, " ")

template-words

[list: "Thousands", "of", "Plural-Noun", "ago", ...]

template = "Thousands of Plural-Noun ago, ..."

template-words = string-split-all(template, " ")

template-words

[list: "Thousands", "of", ”PIuraI-Noun"

We need to substitute a fandom plural noun here!

"Thousands of Plural-Noup ago, ..."
string-split-all

[list: "Thousands", "of", "Plural-Noun"j"ago", ...]

Something like transform-column but for lists

[list: "Thousands", "of", "gazebos", "ago", ...]

Needs a helper function!

"Thousands of Plural-Noup ago, ..."

string-split-all

[list: "Thousands", "of", "Plural-Noun"j"ago", ...]
Something like transform-column but for lists
UsNg
[list: "Thousands", "of", "gazebos", "ago", ...]

substitute-word
"Thousands" -> "THousands"

"Plural-Noun" -> "gazebos"

I'd write the helper function first!

substitute-word(w :: String) -> String:
: "Substitute a random word if w is a category"

substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun")

Uh oh! We don’t know what
particular word it will be!

substitute-word(w :: String) -> String:
: "Substitute a random word if w is a category"

substitute-word("Thousands") is "Thousands"
substitute-word("Plural-Noun") "Plural-Noun"

We know what it isn’t!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”

substitute-word("'Thousands") is "Thousands”
substitute-word("Plural-Noun") "Plural-Noun"
plural-nouns.member(
substitute-word("Plural-Noun"))

And we know it’'s one of the right choice

plural-nouns = [list: "gazebos", "avocados", "pandas"]

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”

substitute-word("'Thousands") is "Thousands”

substitute-word("Plural-Noun") "Plural-Noun"

plural-nouns.member(
substitute-word("Plural-

The left part of an example can be any expression!

plural-nouns = [list: "gazebos", "avocados", "pandas"]

fun substitute-word(w :: String) -> String:
doc: "Substitute a random word if w is a category"
it w=="Plural-Noun":

else:
W
end
where:

end

We need a random element of a list.

Time to check the Pyret documentation!

www.pyret.org/docs/latest/numbers.html &

3.2.5 Random Numbers

num-random :: (max :: Number) -> Number

Returns a pseudo-random positive integer from 0 to max - 1.

Examples:

check:
fun between(min, max):

lam(v): (v >= min) and (v <= max) end
end
for each(i from range(0, 100)):
block:
n = num-random(10)
print(n)
n satisfies between(0, 10 - 1)
end
end
end
num-random-seed :: (seed :: Number) -> Nothing

Sets the random seed. Setting the seed to a particular number makes all future uses of
random produce the same sequence of numbers. Useful for testing and debugging
functions that have random behavior.

Examples:

check:
num-random-seed(0)
n = num-random(1000)

https://www.pyret.org/docs/latest/numbers.html(part._.Random_.Numbers)

We didn’t find a built-in way to get a random

element of a list, but we found a way to get a
random number.

How could we use this?

www.pyret.org/docs/latest/lists.html &

.get :: (n :: Number) -> a

Returns the nth element of the given List, or raises an error if n is out of range.

Examples:

check:

[list: 1, 2, 3].get(0) is 1

[list:].get(0) raises "too large"

[list: 1, 2, 3].get(-1) raises "invalid argument”
end

.set :: (n :: Number,e :: a) -> List<a>

Returns a new rist with the same values as the given 1.ist but with the nth element set
to the given value, or raises an error if n is out of range.

Examples:

check:
[list: 1, 2, 3].set(0, 5) is [list: 5, 2, 3]
[list:].set(0, 5) raises "too large"

end
.foldl :: (f :: (a, Base -> Base), base :: Base) -> Base
Computes f(last-elt, ... f(second-elt, f(first-elt, base))...). For empty,

returns base.

In other words, .fo1dl uses the function f, starting with the base value, of type Base, to

https://www.pyret.org/docs/latest/lists.html(part._lists_.List_shared._methods_get)

With a table, we could use .row-n t0 get a
specific row by Its index number.

With a list, we can use .get to get an item.

Get a random number

Get then list element positioned at that number

plural-nouns = [list: "gazebos", "avocados", "pandas"]

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”
== "Plural-Noun":
rand = num-random(3)
plural-nouns.get(rand)

W

plural-nouns = |

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”
== "Plural-Noun": I:I
rand = num-random(3)
plural-nouns.get(rand)

W

plural-nouns = [list: "gazebos", "avocados”, "pandas”,

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”
== "Plural-Noun": I:I
rand = num-random(3)
plural-nouns.get(rand)

W

plural-nouns = [list: "gazebos", "avocados”, "pandas”,
"quokkas"]

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”
== "Plural-Noun":
rand = num-random(length(plural-nouns))
plural-nouns.get(rand)

W

template = "Thousands of Plural-Noun ago, there were calendars that enabled the ancient Plural-Noun to divide a
year into twelve Plural-Noun , each month into Number weeks, and each week into seven Plural-Noun . At first,
Id time by a sun clock, sometimes known as the Noun dial. Ultimately, they invented the great timekeeping
devices of today, such as the grandfather Noun, the pock , the alarm Noun, and, of course, the Body-Part
watch. Children learn about clocks and time almost before they learn their A-B- Alphabet-Letter s. They are taught

that a day consists of 24 Plural-Noun , an hour has 60 PIuraI-Noe has 60 Plural-Noun . By the time
they are in Kindergarten, they know if the big Body-Part is at twelve and the little Bo IS

Number o'clock. | wish we could continue this Adjective lesson, but we’ve run out of Noun ."

[

plural-nouns =

[list: "gazebos", "avocados”, "pandas”, "quokkas"]

numbers =
[list: "-1", "42", "a billion"]

nouns =
[list: "apple”, "computer”, "borscht"]

body-parts =
[list: "elbow", "head", "spleen"]

alphabet-letters =
[llSt "A", "C", ||Z||]

adjectives =
[list: "funky", "boring"]

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category”
== "Plural-Noun":
rand = num-random(length(plural-nouns))
plural-nouns.get(rand)
== "Number":

rand = ...

Don’t repeat yourself!

rand-word(l :: List<String>) -> String:
: "Return a random word in the given list"
rand = num-random(length(l))
l.get(rand)

plural-nouns.member(rand-word(plural-nouns))
numbers.member(rand-word(numbers))

substitute-word(w :: String) -> String:
. "Substitute a random word if w is a category"

w == "Plural-Noun":
rand-word(plural-nouns)

w == "Number":
rand-word(numbers)

w == "Noun":
rand-word(nouns)

w == "Body-Part":
rand-word(body-parts)

w == "Alphabet-Letter":

rand-word(alphabet-letters)
== "Adjective":
rand-word(adjectives)

W

This Is still a bit repetitious —
but it’'s good enough for
today!

Go back to the task plan.

We've completed our helper, and now we need
(o

split the Input Into words

run the helper on every word In the list

Similar to how transform-column runs a function on every row
of a table.

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")

Go back to the task plan.

We've completed our helper, and now we need
(o

4

split the Input Into words

run the helper on every word In the list This is called map!

Similar to how transform-column runs a function on every row
of a table.

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")
map(substitute-word, t)

Go back to the task plan.

We've completed our helper, and now we need
(o

4

split the Input Into words

run the helper on every word In the list

Similar to how transform-column runs a function on every row
of a table.

Ok — are we done?

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")
map(substitute-word, t)

This gives us a list of strings. How can we join it back into a single string?

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")
words-sub = map(substitute-word, words)
join-str(with-sub, " ")

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")
words-sub = map(substitute-word, t)
join-str(words-sub, " ")

What do we know Is true about the output?

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")
words-sub = map(substitute-word, t)
join-str(words-sub, " ")

mad-libs(template) template

mad-libs(t :: String) -> String:
: "Randomly fill in the blanks in the mad libs template”
words = string-split-all(t, " ")
words-sub = map(substitute-word, t)
join-str(words-sub, " ")

mad-libs(template) template
string-contains(mad-libs(template), "Plural-Noun")

Preview: LISts and recursion

What If join-str didn't already exist for our
convenience?

To write a function that processes a list

element by element, we need to understand
the real nature of lists.

A list consists of two parts: a first element and

the rest Of the list.
[=]list: 1, 2, 3]
|.first
1

|.rest
[list: 2, 3]

The first element iIs linked to the rest and so on

until we reach the empty list:
link(1, empty)
[lst: 1]
link(1, link(2, link(3, empty)))
[list: 1, 2, 3]

When we write a function that recursively
processes a list, we deal with these two cases

— linking an element or being empty:

add-nums(l :: List<Number>) -> Number:
(List) I:
| empty =>0
| link(f, r) => f + add-nums(r)

add-n.ums([.])is0
add-nums([list: 1])is1+0
add-nums([list:2,1])is2+1+0

In the case of joining strings, we need to know
not just If the current list Is empty but Is the rest
of the rest empty. This Is how we know
whether to add a space or not.

join-with-spaces(l :: List<String>) -> String:
: "Join the strings in | with a space between each one”
(List) I:
empty =>
link(f, r) =>
(List) r:
empty =>f

link(fr, rr) =>

f+"" +join-with-spaces(r)

join-with-spaces([list:) ""
join-with-spaces([!ist: "y"]) Tyt
:Oin—Wit’]—SpaceS(: : I|X|I’ ||y||]) IIXII + i n + llyll + 1nn

Class code:

https://code.pyret.org/editor#share=1pl3aebeS704fGGIxGh

Sc-NNFaQCBE9ONn&v=4f2ac8e

https://code.pyret.org/editor#share=1pl3aebeS704fGGlxGhSc-NNFaQCBE9On&v=4f2ac8e
https://code.pyret.org/editor#share=1pl3aebeS704fGGlxGhSc-NNFaQCBE9On&v=4f2ac8e

	Slide 1: Tables and Lists
	Slide 2: Where are we? (SEA, then NY, I believe)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Changing a column
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: What’s a column anyway?
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 42: Mad Libs!
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Preview: Lists and recursion
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

