
CMPU 101 – Problem Solving and Abstraction

Peter Lemieszewski

Working With Tables

If we skipped over conditional expressions…

1/30/2023 CMPU 101: Problem Solving and Abstraction 2

• Then, please read chapter 6
• Or review the lab from Friday

• And, check the next slide…

If/else expressions

1/30/2023 CMPU 101: Problem Solving and Abstraction 3

Moving on to… Data Types

1/30/2023 4CMPU 101: Problem Solving and Abstraction

• Here are some data that can be represented with what we’ve seen so far:
• A picture of a dog Image

• The population of Azerbaijan Number

• The complete text of the Baghavad Gita String

• Whether or not I ate breakfast this morning Boolean

A more complex example

1/30/2023 CMPU 101: Problem Solving and Abstraction 5

• What if we wanted to write a program to look up the population of any
town in New York?
• We can consider the last two census years – 2010 and 2020.

• Next slide has a way to get us started…

The Population Function (plain text)

1/30/2023 CMPU 101: Problem Solving and Abstraction 6

fun population(municipality :: String, year :: Number) -> Number:
doc: "Return population of the municipality for the given year"
if municipality == "New York":
if year == 2010:

8175133
else if year == 2020:

8804190
else:

raise("Bad year")
end

else if municipality == "Poughkeepsie":
if year == 2010:

43341
else if year == 2020:

45471
else:

raise("Bad year")
end

else:
raise("Bad municipality")

end
end

Data from: Local Government 2020 Census Interactive Dashboard
wwe1.osc.state.ny.us/localgov/2020-census-interactive-dashboard.htm

The Population Function (pyret)

1/30/2023 CMPU 101: Problem Solving and Abstraction 7

The Population Function (pyret – nested if)

1/30/2023 CMPU 101: Problem Solving and Abstraction 8

Just pointing out nested if stmts here!

What’s all this then? (pyret: new lang. feature)

1/30/2023 CMPU 101: Problem Solving and Abstraction 9

What’s all this then? (pyret: raise)

1/30/2023 CMPU 101: Problem Solving and Abstraction 10

raise…

• stops Pyret from evaluating the program and displays an error
message to the user.

• This is different than returning a value, which lets Pyret continue
as normal. Our "population" function returns numbers, but if it
can't return a number, it will display one of these error messages.

• This is convenient when dealing with unexpected inputs.
• Implied “contract” between caller & callee is broken

• Data is not always “pure!”

A more complex example revisited

1/30/2023 CMPU 101: Problem Solving and Abstraction 11

• What if we wanted to write a program to look up the population of any
town in New York?
• The approach used is not the best approach

• Not at all!

• But why?

• Let’s take another look at the code

The Population Function (pyret)

1/30/2023 CMPU 101: Problem Solving and Abstraction 12

The Population Function (pyret)

1/30/2023 CMPU 101: Problem Solving and Abstraction 13

We have New York City…

We have… none of the other 1528 municipalities!

We have Poughkeepsie…

How to consider functions

1/30/2023 CMPU 101: Problem Solving and Abstraction 14

• KEY IDEA: Separate data from code computations.

Then, we can reuse the data in as many functions as we want.

• Another KEY IDEA: Table-Driven Programming (my term!)

i.e. Organize data into tables and we can tailor functions based on tables

What’s a Table?

1/30/2023 CMPU 101: Problem Solving and Abstraction 15

• It is tabular data made up of rows/columns
• similar to what you would see in a spreadsheet

Defining a Table in pyret

1/30/2023 CMPU 101: Problem Solving and Abstraction 16

• Dileneate data using commas

Name of the table

Column Headings
are named here

Defining a Table in pyret

1/30/2023 CMPU 101: Problem Solving and Abstraction 17

• Dileneate data using commas

Name of the table

Column Headings
are named here

Q: What type of data
makes up a single row?

Defining a Table in pyret – adding data types

1/30/2023 CMPU 101: Problem Solving and Abstraction 18

municipalities =
table: name :: String, kind :: String,

pop-2010 :: Number, pop-2020 :: Number
row: "Adams", "Town", 5143, 4973
row: "Adams", "Village", 1775, 1633
row: "Addison", "Town", 2595, 2397
row: "Addison", "Village", 1763, 1561
row: "Afton", "Town", 2851, 2769
#careful if you copy/paste from here,
#all whitespace is not the same!

end

Steps to Create the table

1/30/2023 CMPU 101: Problem Solving and Abstraction 19

1. Name the table (minicipalities here) & click Run (“mi” and not “mu” here) -> table is created
2. Type in “minicipalities” & press enter key -> table is displayed
3. Good idea to simply include lines 2-7 in your programs, even if they aren’t necessary right now
4. (again) be careful when doing copy/paste, tab keys and space characters have different behavior

Publish or Perish

1/30/2023 CMPU 101: Problem Solving and Abstraction 20

• So much data, so little time!
• We can share tables using the “Publish” menu button rather than typing/copying/pasting/whatever

• Important for sharing ginormous tables instead of gathering data yourself

Publish or Perish (2)

1/30/2023 CMPU 101: Problem Solving and Abstraction 21

• End result is a sharable “link!”
• That we can, umm, type/copy/paste/whatever.

Publish or Perish (3)

1/30/2023 CMPU 101: Problem Solving and Abstraction 22

• End result is a sharable “link!”
• That we can, umm, type/copy/paste/whatever.

Publish or Perish (4)

1/30/2023 CMPU 101: Problem Solving and Abstraction 23

• End result is a sharable “link!”
• That we can, umm, type/copy/paste/whatever.

Publish or Perish (5)

1/30/2023 CMPU 101: Problem Solving and Abstraction 24

• Here we use the table called minicipalities (as if we compiled the data ourselves)

Turning the Tables

1/30/2023 CMPU 101: Problem Solving and Abstraction 25

• Let’s use the complete set of data from the NY State website!

Turning the Tables (2)

1/30/2023 CMPU 101: Problem Solving and Abstraction 26

• You should be able to copy/paste these lines into pyret to get the same results:
• (It worked on my machine at home!)

Load textbook functions for working with tables

include shared-gdrive("dcic-2021",

"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

Load the full municipalities table

include shared-gdrive("municipalities",
"18eBAc9RcBfDQDpgjUkBQRj7LjgvAaXFs")

#Click "Run" then

#To see the tabular data in pyret,

#Type in "municipalities" sans quotes (the name of the table) on RHS

Ok, I’ve got a table. Now what?

• Now that we have the data in Pyret, we can write programs to “crunch the
numbers” i.e. analyze the data!

• We’ll need to learn some basic table manipulation
functions first…

1/30/2023 CMPU 101: Problem Solving and Abstraction 27

Extracting Rows

1/30/2023 CMPU 101: Problem Solving and Abstraction 28

Row Data

• The data type returned by .row-n is a Row.

• We can access a value in the row by specifying the name of a column:

• ››› municipalities.row-n(0)["name"]

• "Adams"

• A note about the format of the above statement
• The parentheses () are saying that row-n is a function

• The square brackets [] are saying to look up or extract the
value of a particular column (the column named “name” here)

1/30/2023 CMPU 101: Problem Solving and Abstraction 29

Row Data as input to a function

• We can write a function that takes a row as input:

fun population-decreased(r :: Row) -> Boolean:
doc: "Return true if the municipality's population went down between 2010 and 2020"
r["pop-2020"] < r["pop-2010"]

end

• If you remember Friday’s lab, we can safely omit the explicit
checks using if statements when returning a Boolean.

if r["pop-2020"] < r["pop-2010"]:

true

else:

false

end

1/30/2023 CMPU 101: Problem Solving and Abstraction 30

Defining a Table in pyret – adding data types

1/30/2023 CMPU 101: Problem Solving and Abstraction 31

municipalities =
table: name :: String, kind :: String,

pop-2010 :: Number, pop-2020 :: Number
row: "Adams", "Town", 5143, 4973
row: "Adams", "Village", 1775, 1633
row: "Addison", "Town", 2595, 2397
row: "Addison", "Village", 1763, 1561
row: "Afton", "Town", 2851, 2769
#careful if you copy/paste from here,
#all whitespace is not the same!

end

Filtering data and (re)Ordering Tables

1/30/2023 CMPU 101: Problem Solving and Abstraction 32

From this point on, we will need to include the textbook functions via:

Load textbook functions for working with tables
include shared-gdrive("dcic-2021", "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

(I’ll provide it with sample code; you’ll just need to remember to copy/paste into your programs)

Filtering data and (re)Ordering Tables

1/30/2023 CMPU 101: Problem Solving and Abstraction 33

From this point on, we will need to include the textbook functions via:

Load textbook functions for working with tables
include shared-gdrive("dcic-2021", "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

(I’ll provide it with sample code; you’ll just need to remember to copy/paste into your programs)

Filtering data and (re)Ordering Tables

1/30/2023 CMPU 101: Problem Solving and Abstraction 34

Can we synthesize the data in municipalities to create a new table showing only cities where the
population decreased between 2010 and 2020?

Filtering data and (re)Ordering Tables

1/30/2023 CMPU 101: Problem Solving and Abstraction 35

Can we synthesize the data in municipalities to create a new table showing only cities where the
population decreased between 2010 and 2020?

Spoiler Alert: YES, we can do that!

Brainstorming ways to do this: Table as parameter

1/30/2023 CMPU 101: Problem Solving and Abstraction 36

Create function that accepts a table and finds all municipalities with pop. decrease
fun filter-population-decreased(t :: Table) -> Table:
if population-decreased(t.row-n(0)):

... # Keep row 0
if population-decreased(t.row-n(1):
... # Keep row 1

else:
... # Don't keep row 1

end
else:

... # Don't keep row 0
end

end

Brainstorming ways to do this (2)

1/30/2023 CMPU 101: Problem Solving and Abstraction 37

fun filter-population-decreased(t :: Table) -> Table:
if population-decreased(t.row-n(0)):

... # Keep row 0
if population-decreased(t.row-n(1):
... # Keep row 1

else:
... # Don't keep row 1

end
else:

... # Don't keep row 0
end

end

We would need 1500+ if statements? Noooooooo…
Good idea, but awful implementation. We don’t really
need to write code like this!
We can write general, all-purpose code to handle this.

This is the way…

1/30/2023 CMPU 101: Problem Solving and Abstraction 38

filter-with can be used as a function to create a table with the desired set of rows…

filter-with(municipalities, population-decreased)

Two parameters
1. Our (municipalities) table
2. A function that filter-with uses. It will accept a row as a parameter and return a Boolean

• In other words, filter-with will iterate through the rows in our table, keeping what fits its criterion
• A place with a decrease in population!

This is the way… more generally

1/30/2023 CMPU 101: Problem Solving and Abstraction 39

filter-with(t :: Table, keep :: (Row -> Boolean))

-> Table
Read this as: Given a table and a predicate on rows, returns a table with only the rows for which the predicate
returns true.

Again, two parameters
1. A data type of table
2. A keep function (the predicate) that filter-with uses. It will accept a row as a parameter and return a

Boolean

A similar example with municipalities

1/30/2023 CMPU 101: Problem Solving and Abstraction 40

We can also use filter-with to get a table made up of just the towns:

fun is-town(r :: Row) -> Boolean:

doc: "Check if a row is for a town"

r["kind"] == "Town"

end

filter-with(municipalities, is-town)

Expanding our options

order-by(t :: Table, colname :: String, sort-up :: Boolean)

-> Table

Given a table and the name of a column in that table, return a table with the same
rows but ordered based on the named column.

If sort-up is true, the table will be sorted in ascending order, otherwise (false) it will
be in descending order.

1/30/2023 CMPU 101: Problem Solving and Abstraction 41

We can also order the data by the values in one column:

order-by(municipalities, "pop-2020", false)

We can combine all of these too!

1/30/2023 CMPU 101: Problem Solving and Abstraction 42

How do we create a function that gives us the town with the smallest population?

?

We can combine all of these too!

1/30/2023 CMPU 101: Problem Solving and Abstraction 43

How do we use the order-by function to give us the town with the smallest population?

order-by(
filter-with(municipalities, is-town),
"pop-2020",
true).row-n(0)

Using what we have seen

• PROBLEM: We want to know the fastest-growing towns in New York.

1/30/2023 CMPU 101: Problem Solving and Abstraction 44

Using what we have seen (2)

• PROBLEM: We want to know the fastest-growing towns in New York.

• i.e. we want a table containing only towns, sorted by the percent change in
population.

• Let’s break the problem statement into manageable parts

1/30/2023 CMPU 101: Problem Solving and Abstraction 45

Using what we have seen (3)

• PROBLEM: We want to know the fastest-growing towns in New York.

• i.e. we want a table containing only towns, sorted by the percent change in
population.

• Let’s break the problem statement into manageable parts
• Make a new table and…

1. Filter out the cities, etc. (i.e. only towns)

2. Calculate percentage change in population

3. Build a (new) column for percentage change

4. Sort the table based on that new column in descending order

1/30/2023 CMPU 101: Problem Solving and Abstraction 46

Building a solution (1)

• PROBLEM: We want to know the fastest-growing towns in New York.

• i.e. we want a table containing only towns, sorted by the percent change in
population.

• Let’s break the problem statement into manageable parts
• Make a new table and…

1. Filter out the cities, etc. (i.e. only towns)
• towns = filter-with(municipalities, is-town)

2. Calculate percentage change in population

3. Build a (new) column for percentage change

4. Sort the table based on that new column in descending order

1/30/2023 CMPU 101: Problem Solving and Abstraction 47

Building a solution (2)

• PROBLEM: We want to know the fastest-growing towns in New York.

• i.e. we want a table containing only towns, sorted by the percent change in
population.

• Let’s break the problem statement into manageable parts
• Make a new table and…
1.Filter out the cities, etc. (i.e. only towns)

• towns = filter-with(municipalities, is-town)

2.Calculate percentage change in population
fun percent-change(r :: Row) -> Number:

doc: "Compute the percentage change for the population of the given municipality between 2010 and 2020"

(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

3.Build a (new) column for percentage change
4.Sort the table based on that new column in descending order

1/30/2023 CMPU 101: Problem Solving and Abstraction 48

Building a solution (3)

• PROBLEM: We want to know the fastest-growing towns in New York.
• i.e. we want a table containing only towns, sorted by the percent change in

population.
• Let’s break the problem statement into manageable parts

• Make a new table and…
1.Filter out the cities, etc. (i.e. only towns)

• towns = filter-with(municipalities, is-town)
2.Calculate percentage change in population

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of the given municipality between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

3.Build a (new) column for percentage change
towns-with-percent-change =

build-column(towns, "percent-change", percent-change)

4.Sort the table based on that new column in descending order

1/30/2023 CMPU 101: Problem Solving and Abstraction 49

Building a solution (4)

• PROBLEM: We want to know the fastest-growing towns in New York.

• i.e. we want a table containing only towns, sorted by the percent change in population.

• Let’s break the problem statement into manageable parts
• Make a new table and…
1. Filter out the cities, etc. (i.e. only towns)

• towns = filter-with(municipalities, is-town)
2. Calculate percentage change in population

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of the given municipality between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]

end

3. Build a (new) column for percentage change
towns-with-percent-change =

build-column(towns, "percent-change", percent-change)

4. Sort the table based on that new column in descending order
fastest-growing-towns =

order-by(towns-with-percent-change,
"percent-change", false)

1/30/2023 CMPU 101: Problem Solving and Abstraction 50

Full solution… almost (see how it runs!)
• PROBLEM: We want to know the fastest-growing towns in New York.

fun percent-change(r :: Row) -> Number:
doc: "Compute the percentage change for the population of the given municipality between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]

end
Fun is-town(r :: Row) -> Boolean:

doc: "Check if a row is for a town"
r["kind"] == "Town"

end
towns = filter-with(municipalities, is-town)

towns-with-percent-change =
build-column(towns, "percent-change", percent-change)

fastest-growing-towns =
order-by(towns-with-percent-change,
"percent-change", false)

fastest-growing-towns

1/30/2023 CMPU 101: Problem Solving and Abstraction 51

Acknowledgements

1/30/2023 CMPU 101: Problem Solving and Abstraction 52

• This lecture incorporates material from:

• Kathi Fisler, Brown University,

• Gregor Kiczales, University of British Columbia,

• And, Jonathan Gordon

	Slide 1: Working With Tables
	Slide 2: If we skipped over conditional expressions…
	Slide 3: If/else expressions
	Slide 4: Moving on to… Data Types
	Slide 5: A more complex example
	Slide 6: The Population Function (plain text)
	Slide 7: The Population Function (pyret)
	Slide 8: The Population Function (pyret – nested if)
	Slide 9: What’s all this then? (pyret: new lang. feature)
	Slide 10: What’s all this then? (pyret: raise)
	Slide 11: A more complex example revisited
	Slide 12: The Population Function (pyret)
	Slide 13: The Population Function (pyret)
	Slide 14: How to consider functions
	Slide 15: What’s a Table?
	Slide 16: Defining a Table in pyret
	Slide 17: Defining a Table in pyret
	Slide 18: Defining a Table in pyret – adding data types
	Slide 19: Steps to Create the table
	Slide 20: Publish or Perish
	Slide 21: Publish or Perish (2)
	Slide 22: Publish or Perish (3)
	Slide 23: Publish or Perish (4)
	Slide 24: Publish or Perish (5)
	Slide 25: Turning the Tables
	Slide 26: Turning the Tables (2)
	Slide 27: Ok, I’ve got a table. Now what?
	Slide 28: Extracting Rows
	Slide 29: Row Data
	Slide 30: Row Data as input to a function
	Slide 31: Defining a Table in pyret – adding data types
	Slide 32: Filtering data and (re)Ordering Tables
	Slide 33: Filtering data and (re)Ordering Tables
	Slide 34: Filtering data and (re)Ordering Tables
	Slide 35: Filtering data and (re)Ordering Tables
	Slide 36: Brainstorming ways to do this: Table as parameter
	Slide 37: Brainstorming ways to do this (2)
	Slide 38: This is the way…
	Slide 39: This is the way… more generally
	Slide 40: A similar example with municipalities
	Slide 41: Expanding our options
	Slide 42: We can combine all of these too!
	Slide 43: We can combine all of these too!
	Slide 44: Using what we have seen
	Slide 45: Using what we have seen (2)
	Slide 46: Using what we have seen (3)
	Slide 47: Building a solution (1)
	Slide 48: Building a solution (2)
	Slide 49: Building a solution (3)
	Slide 50: Building a solution (4)
	Slide 51: Full solution… almost (see how it runs!)
	Slide 52: Acknowledgements

