Working With Tables

CMPU 101 — Problem Solving and Abstraction

Peter Lemieszewski

If we skipped over conditional expressions... @

* Then, please read chapter 6

* Or review the lab from Friday
* And, check the next slide...

1/30/2023 CMPU 101: Problem Solving and Abstraction 2

If/else expressions

To form an if expression Trie—taloe

(expression;T question
(expression:-

True (“then”) answer

<expressioK
False (“else”)

answer

1/30/2023 CMPU 101: Problem Solving and Abstraction

Moving on to... Data Types @

* Here are some data that can be represented with what we’ve seen so far:
* A picture of a dog Image
* The population of Azerbaijan Number
* The complete text of the Baghavad Gita String
* Whether or not | ate breakfast this morning Boolean

1/30/2023 CMPU 101: Problem Solving and Abstraction 4

A more complex example @

* What if we wanted to write a program to look up the population of any
town in New York?

* We can consider the last two census years — 2010 and 2020.
* Next slide has a way to get us started...

1/30/2023 CMPU 101: Problem Solving and Abstraction 5

The Population Function (plain text) @

fun population(municipality :: String, year :: Number) -> Number:
doc: "Return population of the municipality for the given year"
if municipality == "New York":
if year == 2010:
8175133
else if year == 2020:
8804190 Data from: Local Government 2020 Census Interactive Dashboard
else: wwel.osc.state.ny.us/localgov/2020-census-interactive-dashboard.htm
raise("Bad year")
end
else if municipality == "Poughkeepsie":
if year == 2010:
43341
else if year == 2020:
45471
else:
raise("Bad year")
end
else:
raise("Bad municipality")
end
end

1/30/2023 CMPU 101: Problem Solving and Abstraction 6

The Population Function (pyret)
l v View v File Insert

4

use context essentials2021

NV ONOU P~ WN R
<

1/30/2023 CMPU 101: Problem Solving and Abstraction

The Population Function (pyret — nested if)

4

O 00N U~ W=

1/30/2023

v View v File Insert

+ fun population(municipality :: String, year :: Number) -> Number:

"Return population o he mup nality for the given year”

1f municipality == "New York":

8175133
else if year == 2020:
8804190
else:
raise("Bad year")
end

Poughkeepsie”:

if year == 2010:
43341

else if year == 2020:
45471

else:
raise("Bad year")

Just pointing out nested if stmts here!

else:

raise("Bad municipality")

end

CMPU 101: Problem Solving and Abstraction

What's all this then? (pyret: new lang. feature)
v k’ v View v File Insert

1

2+ fun population(municipality :: String, year :: Number) -> Number:
3 doc: "Return population of the municipality for the given year"
4+ 1f municipality == "New York":

5v if year == 2010:

6 8175133

7 else if year == 2020:

8 8804190

9 - -

10 3

11 end

12 else if municipality == "Poughkeepsie":

13 v if year == 2010:

14 43341

15 else if year == 2020:

16 45471

17 plse:

18 raise("Bad year"

19 end

20 else:

21
22 end

23 end

24

1/30/2023 CMPU 101: Problem Solving and Abstraction

What's all this then? (pyret: raise)

raise...

* stops Pyret from evaluating the program and displays an error
message to the user.

* This is different than returning a value, which lets Pyret continue
as normal. Our "population" function returns numbers, but if it

can't return a number, it will display one of these error messages.

* This is convenient when dealing with unexpected inputs.
* Implied “contract” between caller & callee is broken
* Data is not always “pure!”

1/30/2023 CMPU 101: Problem Solving and Abstraction

10

A more complex example revisited @

* What if we wanted to write a program to look up the population of any
town in New York?
* The approach used is not the best approach
* Not at all!

e But why?
* Let’s take another look at the code

1/30/2023 CMPU 101: Problem Solving and Abstraction 11

The Population Function (pyret)
l v View v File Insert

4

use context essentials2021

NV ONOU P~ WN R
<

1/30/2023 CMPU 101: Problem Solving and Abstraction

12

The Population Function (pyret)
v l v View v File Insert

use context essentials2021

NV ONOU P~ WN R
<

1/30/2023 CMPU 101: Problem Solving and Abstraction

nicipalities!

13

How to consider functions @

* KEY IDEA: Separate data from code computations.
Then, we can reuse the data in as many functions as we want.

* Another KEY IDEA: Table-Driven Programming (my term!)
i.e. Organize data into tables and we can tailor functions based on tables

1/30/2023 CMPU 101: Problem Solving and Abstraction 14

What’s a Table?

[N N) 4 New York population
B v v o | g Lal v M
T Population
Municipality Class 2010 2020
Adams Town 5,143 4973
Adams Village 1,775 1,633
Addison Town 2,595 2,397
Addison Village 1,763 1,561
Afton Town 2,851 2,769
Afton Village 822 794
* It is tabular data made up of rows/columns
p Akron Village 2,868 2,888
Alabama Town 1,869 1,602
. . . Albany City 97,856 99,224
* similar to what you would see in a spreadsheet
Albion Town 2,073 2,009
Albion Village 6,056 5,637
Alden Town 10,865 9,706
Alden Village 2,605 2,604
Alexander Town 2,534 2,491
Alexander Village 509 518
Alexandria Town 4,061 3,741
Alexandria Bay Village 1,078 924
Alfred Town 5,237 5,157
Alfred Village 4,174 4,026
Allegany Town 8,004 7,493
Allegany Village 1816 1,544
Allen Town 448 494
Alma Town 842 781
Almond Town 1,633 1,512
Almond Village 466 415
Altamont Village 1,720 1,675
Altona Town 2,887 2,666

Amboy Town 1,263 1,245

1/30/2023 CMPU 101: Problem Solving and Abstraction

Defining a Table in pyret @

To define a table in Pyret, we specify its

contents like so: Name of the table
municipalities = 4’ ’
: name, kind, pop-2010, pop-202
: "Adams”, "Town", 5143, 4973
: "Adams", "Village", 1775, 1633
: "Addison”, "Town", 2595, 2397
: "Addison", "Village", 1763, 1561

: "Afton”, "Town", 2851, 2769 Column Headings

are named here

* Dileneate data using commas

1/30/2023 CMPU 101: Problem Solving and Abstraction 16

Defining a Table in pyret @

To define a table in Pyret, we specify its

contents like so: Name of the table
municipalities = 4/ /
: name, kind, pop-2010, pop-202
: "Adams”, "Town", 5143, 4973
: "Adams", "Village", 1775, 1633
: "Addison”, "Town", 2595, 2397
: "Addison", "Village", 1763, 1561

: "Afton”, "Town", 2851, 2769 Column Headings

are named here

) . Q: What type of data
* Dileneate data using commas makes up a single row?

1/30/2023 CMPU 101: Problem Solving and Abstraction 17

Defining a Table in pyret — adding data types

1/30/2023

municipalities =
: name :: String, kind :: String,
pop-2010 :: Number, pop-2020 :: Number
: "Adams", "Town", 5143, 4973
: "Adams"”, "Village", 1775, 1633
: "Addison", "Town", 2595, 2397
: "Addison”, "Village", 1763, 1561
: "Afton", "Town", 2851, 2769
#tcareful if you copy/paste from here,
#all whitespace is not the same!

CMPU 101: Problem Solving and Abstraction

18

Steps to Create the table

1/30/2023

P wnN e

v x v View v File (minicipalities) Insert Publish “' Stop

1 ... L.
2 # Load textbook functions for working with mminicipalities
tables
3+ include shared-gdrive("dcic-2021", . B B
4 "1wyQZj_LOGqVIEKgroaubRX2iqt2Ga8Ep") name s pop-2010 pop-2620
5
6 # This 1s a special line for allowing the - - T -
contents to be included in other programs AU Town 2143 e
7+ provide: * end
g minicipalities - "Adams" "village" 1775 1633
10+ table: name, kind, pop-2010, pop-2020
11 Yow: "AdamS", "TDWH", 5143, 4973 "Addisonll "Town" 2595 2397
12 row: "Adams", "Village", 1775, 1633
13 row: "Addison", "Town", 2595, 2397
14 row: "Addison"”, "Village", 1763, 1561 "Addison" "Vi]_lage" 1763 1561
15 row: "Afton", "Town", 2851, 2769
16 end
1; "Afton" "Town" 2851 2769

b234

Name the table (minicipalities here) & click Run (“mi” and not “mu” here) -> table is created
Type in “minicipalities” & press enter key -> table is displayed

Good idea to simply include lines 2-7 in your programs, even if they aren’t necessary right now
(again) be careful when doing copy/paste, tab keys and space characters have different behavior

CMPU 101: Problem Solving and Abstraction 19

Publish or Perish @

* So much data, so little time!
* We can share tables using the “Publish” menu button rather than typing/copying/pasting/whatever

* Important for sharing ginormous tables instead of gathering data yourself

v % v View v File (minicipalities) Insert Publish “' Stop

I

1/30/2023 CMPU 101: Problem Solving and Abstraction 20

Publish or Perish (2)

* End result is a sharable “link!”
* That we can, umm, type/copy/paste/whatever.

Share or update the published copy

You can copy the link below to share the most recently published version with others.
You can copy the code below to use the published version as a library.

import shared-gdrive("minicipalities", "1g2BPbORjYIbScjBvPiOfr7yKGMXb-9EB"

You can also click Update below to copy the current version to the published version, or click Close

to exit this window.

1/30/2023 CMPU 101: Problem Solving and Abstraction

21

Publish or Perish (3)

* End result is a sharable “link!”
* That we can, umm, type/copy/paste/whatever.

Share or update the published copy

You can copy the link below to share the most recently published version with others.

You can copy the code below to use the published version as a library.

import shared-gdrive("minicipalities", "1g2BPbORjYIbScjBvPiOfr7yKGMXb-9EB"

You can also click Update below to copy the current verg' .ito the published version, or click Close

to exit this window. 7/7@

(T
n I‘/f}'er/

1/30/2023 CMPU 101: Problem Solving and Abstraction

Update

22

Publish or Perish (4)

* End result is a sharable “link!”
* That we can, umm, type/copy/paste/whatever.

Share or update the published copy

You can copy the link below to share the most recently published version with others.

You can copy the code below to use the published version as a library.

import shared-gdrive("minicipalities", "1g2BPbORjYIbScjBvPiOfr7yKGMXb-9EB"

You can also click Update below tof /py the current version to the published version, or click Close
to exit this window.

7h
§
GOOOl /.78/77@
gy by, Cayy e,
ey, hey, Chy, - be
601./0" UO,//) /78 e //7
7

1/30/2023 CMPU 101: Problem Solving and Abstraction

23

Publish or Perish (5)

* Here we use the table called minicipalities (as if we compiled the data ourselves)

v x’ v View v File (ttestarr) Insert Publish “'

Stop

1

2 v include shared-gdrive("dcic-2021", mminicipalities

3 "1wyQZj_LOgqV9Ekgr9aub6RX2iqt2Ga8Ep")

4 .

5+ include shared-gdrive("minicipalities", name AT

"1g2BPbORjYIbScjBvPi®fr7yKGMXb-9EB")

S "Adams" "Town"

8
"Adams" "Village"
"Addison” "Town"
"Addison" "Village"
"Afton" "Town"

M

1/30/2023 CMPU 101: Problem Solving and Abstraction

pop-2010

5143

1775

2595

1763

2851

pop-2020

4973

1633

2397

1561

2769

24

Turning the Tables

* Let’s use the complete set of data from the NY State website!

v % v View v File (ttest.arr) Insert Publish

1
2 |# Load textbook functions for working with tables "Addison"
3 v include shared-gdrive("dcic-2021",
L "1wyQZj_LOqqV9Ekgr9au6RX2iqt2Ga8Ep")
5 '# Load the full municipalities table "Afton"
6 v include shared-gdrive("municipalities"”,
"18eBAC9RcBfDQDpgjUKBQRj7LjgvAaXFs")
"Afton"
#Click "Run" then
9 |#To see the tabular data in pyret,
10 #Type in "municipalities” sans quotes (the name of the table) on RHS "Airmont”
11
12
13 "Akron"
"Alabama”
"Albany"
23
1/30/2023 CMPU 101: Problem Solving and Abstraction

"Village"

"Town"

"Village"

"Village"

"Village"

"Town"

" City"

1763

2851

822

8628

2868

1869

97856

1561

2769

794

10166

2888

1602

09224

Click to show the remaining 1580 rows...

Stop

25

Turning the Tables (2) @

* You should be able to copy/paste these lines into pyret to get the same results:
* (It worked on my machine at home!)

Load textbook functions for working with tables
include shared-gdrive ("dcic-2021",

"lwyQZj LOggqV9Ekgr9auoRX21gt2Ga8Ep")
Load the full municipalities table

include shared-gdrive ("municipalities",
"18eBACIO9RcBEDODpgjUkBOR] 7LjgvAaxXFs")

#Click "Run" then

#To see the tabular data in pyret,

#Type in "municipalities" sans quotes (the name of the table) on RHS

1/30/2023 CMPU 101: Problem Solving and Abstraction 26

Ok, I've got a table. Now what? @

* Now that we have the data in Pyret, we can write programs to “crunch the
numbers” i.e. analyze the data!

*We’ll need to learn some basic table manipulation
functions first..

1/30/2023 CMPU 101: Problem Solving and Abstraction 27

Extracting Rows

To get a row out of a table, specify its number,
beginning with 0O:

»»» municipalities.row-n{0)

"name" "Adams" "kind" "Town" "pop-2818" 5143 "pop=-2828~ 4973

1/30/2023 CMPU 101: Problem Solving and Abstraction

Row Data @

* The data type returned by .row-n is a Row.
* We can access a value in the row by specifying the name of a column:

*»» municipalities.row-n(0)["name"]

e "Adams"

°* A note about the format of the above statement
* The parentheses () are saying that row-n i1s a function

* The square brackets [] are saying to look up or extract the
value of a particular column (the column named %“name” here)

1/30/2023 CMPU 101: Problem Solving and Abstraction 29

Row Data as input to a function

* We can write a function that takes a row as input:

population-decreased(r :: Row) -> Boolean:
: "Return true if the municipality's population went down between 2010 and 2020"

r["pop-2020"] < r["pop-2010"]

* If you remember Friday’s lab, we can safely omit the explicit
checks using 1f statements when returning a Boolean.

1 A VS NS NARS N AL LI < ol LA SN SO N AN f\"1-
+ 11
C L UL
£l an
LA Lo e

1/30/2023 CMPU 101: Problem Solving and Abstraction

Defining a Table in pyret — adding data types

1/30/2023

municipalities =
: name :: String, kind :: String,
pop-2010 :: Number, pop-2020 :: Number
: "Adams", "Town", 5143, 4973
: "Adams"”, "Village", 1775, 1633
: "Addison", "Town", 2595, 2397
: "Addison”, "Village", 1763, 1561
: "Afton", "Town", 2851, 2769
#tcareful if you copy/paste from here,
#all whitespace is not the same!

CMPU 101: Problem Solving and Abstraction

31

Filtering data and (re)Ordering Tables

From this point on, we will need to include the textbook functions via:

Load textbook functions for working with tables
include shared-gdrive("dcic-2021", "1wyQZj LOqqV9Ekgr9aubRX2igt2Ga8Ep")

(I'll provide it with sample code; you’ll just need to remember to copy/paste into your programs)

1/30/2023 CMPU 101: Problem Solving and Abstraction

32

Filtering data and (re)Ordering Tables

From this point on, we will need to include the textbook functions via:

Load textbook functions for working with tables
include shared-gdrive("dcic-2021", "1wyQZj LOqqV9Ekgr9aubRX2igt2Ga8Ep")

(I'll provide it with sample code; you’ll just need to remember to copy/paste into your programs)

1/30/2023 CMPU 101: Problem Solving and Abstraction

33

Filtering data and (re)Ordering Tables

Can we synthesize the data in municipalities to create a new table showing only cities where the
population decreased between 2010 and 20207?

1/30/2023 CMPU 101: Problem Solving and Abstraction

34

Filtering data and (re)Ordering Tables

Can we synthesize the data in municipalities to create a new table showing only cities where the
population decreased between 2010 and 20207?

Spoiler Alert: YES, we can do that!

1/30/2023 CMPU 101: Problem Solving and Abstraction

35

Brainstorming ways to do this: Table as parameter @

Create function that accepts a table and finds all municipalities with pop. decrease
filter-population-decreased(t :: Table) -> Table:
population-decreased(t.row-n(0)):
... #Keeprow?O
population-decreased(t.row-n(1):
... # Keep row 1

... #Don't keep row 1

... #Don't keep row 0

1/30/2023 CMPU 101: Problem Solving and Abstraction 36

Brainstorming ways to do this (2) @

filter-population-decreased(t :: Table) -> Table:
population-decreased(t.row-n(0)):

... #Keeprow?O
population-decreased(t.row-n(1):
.. H Keep row 1 We would need 1500+ if statements? Noooooooo0...
. Good idea, but awful implementation. We don’t really
' , need to write code like this!
... #Don't keep row 1 We can write general, all-purpose code to handle this.
... #Don't keep row 0

1/30/2023 CMPU 101: Problem Solving and Abstraction 37

This is the way...

filter-with can be used as a function to create a table with the desired set of rows...
filter-with (municipalities, population-decreased)
Two parameters

1. Our (municipalities) table

2. A function that filter-with uses. It will accept a row as a parameter and return a Boolean

* In other words, filter-with will iterate through the rows in our table, keeping what fits its criterion
* A place with a decrease in population!

1/30/2023 CMPU 101: Problem Solving and Abstraction

38

This is the way... more generally @

filter-with(t :: Table, keep :: (Row -> Boolean))
-> Table

Read this as: Given a table and a predicate on rows, returns a table with only the rows for which the predicate
returns true.

Again, two parameters
1. A data type of table

2. Akeep function (the predicate) that filter-with uses. It will accept a row as a parameter and return a
Boolean

1/30/2023 CMPU 101: Problem Solving and Abstraction 39

A similar example with municipalities

We can also use filter-with to get a table made up of just the towns:

is-town(r :: Row) -> Boolean:
: "Check if a row is for a town"

r["kind"] == "Town"

filter-with(municipalities, is-town)

1/30/2023 CMPU 101: Problem Solving and Abstraction

40

Expanding our options @

We can also order the data by the values in one column:

order-by(municipalities, "pop-2020",)

order-by(t :: , colname :: , sort-up ::)
->

Given a table and the name of a column in that table, return a table with the same
rows but ordered based on the named column.

If sort-up is true, the table will be sorted in ascending order, otherwise () it will
be in descending order.

1/30/2023 CMPU 101: Problem Solving and Abstraction

41

We can combine all of these too!

How do we create a function that gives us the town with the smallest population?

1/30/2023 CMPU 101: Problem Solving and Abstraction

42

We can combine all of these too!

How do we use the order-by function to give us the town with the smallest population?

order-by(
filter-with(municipalities, is-town),
"pop-2020",
).row-n(0)

1/30/2023 CMPU 101: Problem Solving and Abstraction

43

Using what we have seen

- prOBLEM: We want to know the fastest-growing towns in New York.

1/30/2023 CMPU 101: Problem Solving and Abstraction

&

44

Using what we have seen (2) @

- prOBLEM: We want to know the fastest-growing towns in New York.

* j.e. we want a table containing only towns, sorted by the percent change in
population.

* Let’s break the problem statement into manageable parts

1/30/2023 CMPU 101: Problem Solving and Abstraction 45

Using what we have seen (3) @

- prOBLEM: We want to know the fastest-growing towns in New York.

* j.e. we want a table containing only towns, sorted by the percent change in
population.

* Let’s break the problem statement into manageable parts

* Make a new table and...

Filter out the cities, etc. (i.e. only towns)

Calculate percentage change in population

Build a (new) column for percentage change

Sort the table based on that new column in descending order

B wnN e

1/30/2023 CMPU 101: Problem Solving and Abstraction 46

Building a solution (1)

1.

w

1/30/2023

Filter out the cities, etc. (i.e. only towns)
* towns = filter-with(municipalities, is-town)

CMPU 101: Problem Solving and Abstraction

a7

Building a solution (2)

2.Calculate percentage change in population

percent-change(r :: Row) -> Number:
: "Compute the percentage change for the population of the given municipality between 2010 and 2020"

(r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

w

1/30/2023 CMPU 101: Problem Solving and Abstraction

48

Building a solution (3)

1.
2.

3.Build a (new) column for percentage change

towns-with-percent-change =
build-column(towns, "percent-change", percent-change)

1/30/2023 CMPU 101: Problem Solving and Abstraction

49

Building a solution (4) @

4.Sort the table based on that new column in descending order
fastest-growing-towns =
order-by(towns-with-perce
"percent-change", false)

1/30/2023 CMPU 101: Problem Solving and Abstraction 50

Full solution... almost (see how it runs!)

PROBLEM: We want to know the fastest-growing towns in New York.

percent-change(r :: Row) -> Number:
: "Compute the percentage change for the population of the given municipality between 2010 and 2020"
(r["pop-2020"] - r["pop-2010"]) /
r["pop-2010"]
end
is-town(r :: Row) -> Boolean:
: "Check if a row is for a town"
r["kind"] == "Town"
end
towns = filter-with(municipalities, is-town)

towns-with-percent-change =
build-column(towns, "percent-change", percent-change)

fastest-growing-towns =
order-by(towns-with-percent-change,

"percent-change", false)

fastest-growing-towns

1/30/2023 CMPU 101: Problem Solving and Abstraction

Acknowledgements

* This lecture incorporates material from:
 Kathi Fisler, Brown University,

* Gregor Kiczales, University of British Columbia,
* And, Jonathan Gordon

1/30/2023 CMPU 101: Problem Solving and Abstraction

52

	Slide 1: Working With Tables
	Slide 2: If we skipped over conditional expressions…
	Slide 3: If/else expressions
	Slide 4: Moving on to… Data Types
	Slide 5: A more complex example
	Slide 6: The Population Function (plain text)
	Slide 7: The Population Function (pyret)
	Slide 8: The Population Function (pyret – nested if)
	Slide 9: What’s all this then? (pyret: new lang. feature)
	Slide 10: What’s all this then? (pyret: raise)
	Slide 11: A more complex example revisited
	Slide 12: The Population Function (pyret)
	Slide 13: The Population Function (pyret)
	Slide 14: How to consider functions
	Slide 15: What’s a Table?
	Slide 16: Defining a Table in pyret
	Slide 17: Defining a Table in pyret
	Slide 18: Defining a Table in pyret – adding data types
	Slide 19: Steps to Create the table
	Slide 20: Publish or Perish
	Slide 21: Publish or Perish (2)
	Slide 22: Publish or Perish (3)
	Slide 23: Publish or Perish (4)
	Slide 24: Publish or Perish (5)
	Slide 25: Turning the Tables
	Slide 26: Turning the Tables (2)
	Slide 27: Ok, I’ve got a table. Now what?
	Slide 28: Extracting Rows
	Slide 29: Row Data
	Slide 30: Row Data as input to a function
	Slide 31: Defining a Table in pyret – adding data types
	Slide 32: Filtering data and (re)Ordering Tables
	Slide 33: Filtering data and (re)Ordering Tables
	Slide 34: Filtering data and (re)Ordering Tables
	Slide 35: Filtering data and (re)Ordering Tables
	Slide 36: Brainstorming ways to do this: Table as parameter
	Slide 37: Brainstorming ways to do this (2)
	Slide 38: This is the way…
	Slide 39: This is the way… more generally
	Slide 40: A similar example with municipalities
	Slide 41: Expanding our options
	Slide 42: We can combine all of these too!
	Slide 43: We can combine all of these too!
	Slide 44: Using what we have seen
	Slide 45: Using what we have seen (2)
	Slide 46: Using what we have seen (3)
	Slide 47: Building a solution (1)
	Slide 48: Building a solution (2)
	Slide 49: Building a solution (3)
	Slide 50: Building a solution (4)
	Slide 51: Full solution… almost (see how it runs!)
	Slide 52: Acknowledgements

