
Data Definitions

13 February 2023

CMPU 101 § 54 · Computer Science I

Where are we?

How was the lab?

We’ve been working with tables for the past

few weeks.

Last class we saw a new data type: lists.

[list:

"A",

"A",

"C",

"B"]

››› grades

[list:

"A",

"A",

"C",

"B"]

››› grades ››› grades.get-column("letter-grade")

We used higher-order functions to work with

tables, and we can do the same with lists:

Tables Lists

transform-column map

We used higher-order functions to work with

tables, and we can do the same with lists:

Tables Lists

transform-column map

filter-with filter

››› lst = [list: "a", "b", "c"]
››› filter(

lam(i): not(i == "a") end,
lst)

[list: "b", "c"]

This is an

anonymous (i.e.,

unnamed) function

made using a

lambda

expression.

Numbers, strings, images, Booleans, tables,

and lists let us represent many kinds of real

data quite naturally.

But there are times when we’re going to want

something a bit different.

Defining structured data

Imagine that we’re doing a study on

communication patterns among students.

We don’t have access to the messages the

students sent – hopefully they’re encrypted! –

but we have metadata for each message:

sender

recipient

day of the week

time (hour and minute)

This kind of metadata might sound

uninteresting, but it can tell us a lot!

Recommended reading:

John Bohannon, “Your call and text records are

far more revealing than you think”, Science,

2016

https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think
https://www.science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think

Imagine that we’re doing a study on

communication patterns among students.

We don’t have access to the messages the

students sent – maybe they’re encrypted! – but

we have metadata for each message:

sender

recipient

day of the week

time (hour and minute)

How should we store this data?

We could have a table, e.g.,

sender ::

String

recipient ::

String

day ::

String
time :: …

"4015551234" "8025551234" "Mon" …

We could have a table, e.g.,

sender ::

String

recipient ::

String

day ::

String
time :: String

"4015551234" "8025551234" "Mon" "4:55"

We could have a table, e.g.,

sender ::

String

recipient ::

String

day ::

String
time :: String

"4015551234" "8025551234" "Mon" 295

We could have a table, e.g.,

sender ::

String

recipient ::

String

day ::

String
time :: List

"4015551234" "8025551234" "Mon" [list: 4, 55]

We could have a table, e.g.,

sender ::

String

recipient ::

String

day ::

String

hour ::

Number

minute ::

Number

"4015551234" "8025551234" "Mon" 4 55

If we use multiple columns, we can access the

components independently, by name, but if we

use a single column, all of the “time” data is in

one place.

To resolve this trade-off, we add structure: We

can have a single data type that has named

parts.

data Time:
| time(hours :: Number, mins :: Number)

end

data Time:
| time(hours :: Number, mins :: Number)

end

The name of the data type

data Time:
| time(hours :: Number, mins :: Number)

end

A constructor function that builds the data type

data Time:
| time(hours :: Number, mins :: Number)

end

The components of the data

After defining the data type,
data Time:

| time(hours :: Number, mins :: Number)
end

we can call time to build Time values,
››› noon = time(12, 0)
››› half-past-three = time(3, 30)

and we can use dot notation to access the components:
››› noon.hours
12
››› half-past.mins
30

Our table could now be:

sender :: String recipient :: String day :: String time :: Time

"4015551234" "8025551234" "Mon" time(4, 55)

Conditional data

data Time:
| time(hours :: Number, mins :: Number)

end

The only way to make Time is to call the
time()

constructor function.

But we can also define conditional data, where

there are multiple varieties of the data.

The varieties can just be fixed values, e.g.,
data Day:
| sunday
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday

end

Or they can be separate constructors, e.g.,
data Message:

| direct(sender :: String,
recipient :: String,
message :: String)

| group(sender :: String,
recipients :: List<String>,
message :: String)

end

Or we can mix these together, e.g.,
data Name:

| name(first :: String, last :: String)
| anonymous

end

Recursive data definitions

Last week we worked with lists – ordered

sequences of items, equivalent to a column in

a table.

Much like the rows in a table, the items in a list

have numeric indices:

››› lst = [list: "a", "b", "c"]

And we can access items using these indices:
››› lst.get(0)
"a"
››› lst.get(1)
"b"

0 1 2

Much like the rows in a table, the items in a list

have numeric indices:

››› lst = [list: "a", "b", "c"]

And we can access items using these indices:
››› lst.get(0)
"a"
››› lst.get(1)
"b"

0 1 2

But writing the list as [list: "a", "b", "c"] is just a

convenient deception!

In its secret heart, Pyret knows there are only

two ways of making a list.

A list is either:

empty or

linking an item to another list.

That is, a list is a kind of conditional data:
data List:

| empty
| link(first :: Any, rest :: List)

end

So, a list of one item, e.g.,

[list: "A"],

is really a link between an item and the empty

list:

link("A", empty)

[list:

"A",

"A",

"C",

"B"]

link("A",

link("A",

link("C",

link("B",

empty))))

Recursion

1

1+1=2
2+1=33+1=44+1=5

1

1+1=2
2+1=33+1=44+1=5

Count all the buses

Count all the buses

Count all the

buses

Count all the

buses

Count

one bus

Recursion is a programming technique where a

problem is solved by solving a smaller version

of the same problem, unless that smaller

version is simple enough to solve directly.

We call the small version that can be solved

directly the base case of the recursive problem.

To write our own functions to process a list,

item by item, we need to use the true form of a

list and think recursively.

Designing functions using
the definition of a list

How would we write a function that takes a list

of numbers and returns its sum?

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is ...

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4
my-sum([list: 1, 4]) is 1 + 4

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4
my-sum([list: 1, 4]) is 1 + 4
my-sum([list: 3, 1, 4]) is 3 + 1 + 4

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4
my-sum([list: 1, 4]) is 1 + 4
my-sum([list: 3, 1, 4]) is 3 + 1 + 4

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + 0
my-sum([list: 1, 4]) is 1 + 4 + 0
my-sum([list: 3, 1, 4]) is 3 + 1 + 4 + 0

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
...

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

...

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

...

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

cases is like a special if

statement that we use to

ask “which shape of data

do I have?”

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

...

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

If the list is empty, do one

thing.

If it’s a link, do another thing.

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

...

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

Denotes the

output of a

function

Marks the

expression to

evaluate if the

data has the

shape on the left.

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

...

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

And this is giving names for referring to the arguments to link.

This gives names for referring to the arguments to my-

sum.

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

...

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

0

| link(f, r) =>
...

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

0

| link(f, r) =>
f + my-sum(r)

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"

cases (List) lst:
| empty =>

0

| link(f, r) =>
f + my-sum(r)

end

where:
my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
cases (List) lst:
| empty => 0
| link(f, r) => f + my-sum(r)

end
where:

my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

fun my-sum(lst :: List<Number>) -> Number:
doc: "Return the sum of the numbers in the list"
cases (List) lst:
| empty => 0
| link(f, r) => f + my-sum(r)

end
where:

my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

When we call this function, it evaluates as:
my-sum(link(3, link(1, link(4, empty))))

→ 3 + my-sum(link(1, link(4, empty)))
→ 3 + 1 + my-sum(link(4, empty))
→ 3 + 1 + 4 + my-sum(empty)
→ 3 + 1 + 4 + 0

Thinking recursively

Any time a problem is structured such that the

solution on larger inputs can be built from the

solution on smaller inputs, recursion is

appropriate.

All recursive functions have these two parts:

Base case(s):

What’s the simplest case to solve?

Recursive case(s):

What’s the relationship between the current case and the

answer to a slightly smaller case?

You should be calling the function you’re defining here; this is

referred to as a recursive call.

fun recursive-function(lst :: List) -> ...:
cases (List) lst:
| empty =>

...

| link(f, r) =>
... recursive-function(r) ...

end
end

Base case

Recursive case

Each time you make a recursive call, you must

make the input smaller somehow.

If your input is a list, you pass the rest of the list to the recursive

call.

link("A",

link("A",

link("C",

link("B",

empty))))

Rest

First

››› lst = [list: "item 1", "and", "so", "on"]
››› lst.first
"item 1"
››› lst.rest
[list: "and", "so", "on"]

cases (List) lst:
| empty => ...
| link(f, r) => ...

end

First Rest

What happens if we don’t make the input

smaller?

fun my-sum(lst :: List<Number>) -> Number:
cases (List) lst:
| empty => 0
| link(f, r) => f + my-sum(r)

end
where:

my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

Recursive call on the rest of the input list

fun my-sum(lst :: List<Number>) -> Number:
cases (List) lst:
| empty => 0
| link(f, r) => f + my-sum(lst)

end
where:

my-sum([list:]) is 0
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])

end

Recursive call on the original input list

When we call this function, it evaluates as:
my-sum(link(3, link(1, link(4, empty))))

→ 3 + my-sum(link(3, link(1, link(4, empty))))
→ 3 + 3 + my-sum(link(3, link(1, link(4, empty))))
→ 3 + 3 + 3 + my-sum(link(3, link(1, link(4, empty))))
...

This isn’t going to end well.

When a recursive function never stops calling

itself, it’s called infinite recursion.

Wrap-up practice

fun list-len(lst :: List) -> Number:
doc: "Compute the length of a list"
cases (List) lst:
| empty => 0
| link(f, r) => 1 + list-len(____)

end
end

fun list-len(lst :: List) -> Number:
doc: "Compute the length of a list"
cases (List) lst:
| empty => 0
| link(f, r) => 1 + list-len(r)

end
end

fun list-product(lst :: List<Number>) -> Number:
doc: "Compute the product of all the numbers in lst"
cases (List) lst:
| empty => 1
| link(f, r) => ____ * list-product(r)

end
end

fun list-product(lst :: List<Number>) -> Number:
doc: "Compute the product of all the numbers in lst"
cases (List) lst:
| empty => 1
| link(f, r) => f * list-product(r)

end
end

fun is-member(item, lst :: List) -> Boolean:
doc: "Return true if item is a member of lst"
cases (List) lst:
| empty => ______
| link(f, r) =>

(f == ______) or (is-member(______, ______)
end

end

fun is-member(item, lst :: List) -> Boolean:
doc: "Return true if item is a member of lst"
cases (List) lst:
| empty => false
| link(f, r) =>

(f == item) or (is-member(item, r)
end

end

Final note

Lists, recursion, and cases syntax are not easy

concepts to grasp separately, much less all

together in a short time.

Don’t feel frustrated if it takes a little while for

these to make sense. Give yourself time, be

sure to practice working in Pyret, and ask

questions.

Class code:
tinyurl.com/101-2023-02-13

https://tinyurl.com/101-2023-02-13

Acknowledgments

This lecture incorporates material from:

Kathi Fisler, Brown University

Ab Mosca, Northeastern University

Doug Woos, Brown University

	Slide 1: Data Definitions
	Slide 2: Where are we?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Defining structured data
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Conditional data
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Recursive data definitions
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43: Recursion
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Designing functions using the definition of a list
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Thinking recursively
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Wrap-up practice
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95: Final note
	Slide 96
	Slide 97: Acknowledgments

