
Generating Fractals

27 February 2023

CMPU 101 § 54 · Computer Science I

Where are we?

Self-reference

Recursive data

data List:

| empty

| link(first :: Any, rest :: List)

end

fun list-fun(lst :: List) -> ...:

cases (List) lst:

| empty => ...

| link(f, r) =>

... f ...

... list-fun(r) ...

end

end

Recursive functions

Natural recursion

The same idea holds for lists, binary trees,

trinary trees, n-ary trees, and all kinds of other

recursive data types: The structure of the

function follows the structure of the data.

The recursive functions we’ve written have

used structural (or natural) recursion.

In structural recursion, each recursive call

takes some sub-piece of the data.

Going through a list, we keep taking the rest of the list.

Going through a tree, we keep looking at the sub-trees.

Generative recursion

In generative recursion, the recursive cases

are generated based on the problem to be

solved.

Generative recursion can be harder because

neither the base nor recursive cases follow

from a data definition.

Template for generative recursion

fun problem-solver(d) -> ...:

if is-trivial(d):

Base case: The computation is in some way

trivial.

... d ...

else:

Recursive case: Transform the data d to generate

new problems.

combiner(

...d...,

problem-solver(transform(d)),

...)

end

end

When you write a function with generative

recursion you need to be careful about

termination – how do you know you’ll ever

reach the base case?

Fractals

“A fractal is a way of seeing infinity.”

Benoit Mandelbrot

Useful for motion capture
suits, even if you are not “Far

From Home.”
See:

https://patents.google.com/p
atent/US20130016876

https://patents.google.com/patent/US20130016876
https://patents.google.com/patent/US20130016876

Design a function that consumes a number and

produces a Sierpiński triangle of that size:

Start with an equilateral triangle with side length s:

Inside that triangle are three more Sierpiński triangles:

And inside of each of those … and so on.

Producing something that looks like this:

s

s/2

[See class code]

How do we know that this function won’t run

forever?

Three-part termination argument:

Base case: s <= CUTOFF

Reduction step: s / 2

Argument that repeated application of reduction step will

eventually reach the base case:

As long as the cutoff is > 0 and s starts >= 0, repeated

division by 2 will eventually be less than the cutoff.

Design a function s-carpet to produce a

Sierpiński carpet of size s:

Design a function s-carpet to produce a

Sierpiński carpet of size s:

There are eight copies of the

recursive call positioned around a

blank square

[See class code]

How do we know that this function won’t run

forever?

Three-part termination argument:

Base case: s <= CUTOFF

Reduction step: s / 3

Argument that repeated application of reduction step will

eventually reach the base case:

As long as the cutoff is > 0 and s starts >= 0, repeated

division by 3 will eventually be less than the cutoff.

Animation

Class code:
tinyurl.com/101-2023-02-27

https://tinyurl.com/101-2023-02-27

Acknowledgments

This lecture incorporates material from:

Gregor Kiczales, University of British Columbia

Marc Smith, Vassar College

	Slide 1: Generating Fractals
	Slide 2: Where are we?
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Generative recursion
	Slide 7
	Slide 8: Template for generative recursion
	Slide 9
	Slide 10: Fractals
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Animation
	Slide 28
	Slide 29: Acknowledgments

