CMPU 101 § 54 • Computer Science I

Generating Fractals

27 February 2023

Where are we?

| empty => ... | link(f,r) =>
... f...
... list-fun(r) ...

end

end

The same idea holds for lists, binary trees, trinary trees, n-ary trees, and all kinds of other recursive data types: The structure of the function follows the structure of the data.

The recursive functions we've written have used structural (or natural) recursion.

In structural recursion, each recursive call takes some sub-piece of the data.
Going through a list, we keep taking the rest of the list.
Going through a tree, we keep looking at the sub-trees.

Generative recursion

In generative recursion, the recursive cases are generated based on the problem to be solved.

Generative recursion can be harder because neither the base nor recursive cases follow from a data definition.

Template for generative recursion

fun problem-solver(d) -> ...:
if is-trivial(d):
\# Base case: The computation is in some way \# trivial.
... d ...
else:
\# Recursive case: Transform the data d to generate \# new problems.
combiner(
...d..., problem-solver(transform(d)), ...)
end
end

When you write a function with generative recursion you need to be careful about termination - how do you know you'll ever reach the base case?

Fractals

"A fractal is a way of seeing, infinity
Benoit Mandelbrot

Design a function that consumes a number and produces a Sierpiński triangle of that size:

Start with an equilateral triangle with side length s :

Inside that triangle are three more Sierpiński triangles:

And inside of each of those ... and soon.
Producing something that looks like this:

[See class code]

How do we know that this function won't run forever?

Three-part termination argument:

Base case: s <= CUTOFF
Reduction step: s / 2
Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is >0 and s starts $>=0$, repeated division by 2 will eventually be less than the cutoff.

Design a function s-carpet to produce a Sierpiński carpet of size s :

Design a function s-carpet to produce a Sierpiński carpet of size s :

There are eight copies of the recursive call positioned around a blank square
[See class code]

How do we know that this function won't run forever?

Three-part termination argument:

Base case: s <= CUTOFF
Reduction step: s / 3
Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is >0 and s starts $>=0$, repeated division by 3 will eventually be less than the cutoff.

Animation

Class code:
tinyurl.com/101-2023-02-27

Acknowledgments

This lecture incorporates material from:
Gregor Kiczales, University of British Columbia
Marc Smith, Vassar College

