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Where are we?



Self-reference

Recursive data

data List:

| empty

| link(first :: Any, rest :: List)

end

fun list-fun(lst :: List) -> ...:

cases (List) lst:

| empty => ...

| link(f, r) =>

... f ...

... list-fun(r) ...

end

end

Recursive functions

Natural recursion



The same idea holds for lists, binary trees, 

trinary trees, n-ary trees, and all kinds of other 

recursive data types: The structure of the 

function follows the structure of the data.



The recursive functions we’ve written have 

used structural (or natural) recursion.

In structural recursion, each recursive call 

takes some sub-piece of the data.

Going through a list, we keep taking the rest of the list.

Going through a tree, we keep looking at the sub-trees.



Generative recursion



In generative recursion, the recursive cases 

are generated based on the problem to be 

solved.

Generative recursion can be harder because 

neither the base nor recursive cases follow 

from a data definition.



Template for generative recursion

fun problem-solver(d) -> ...:

if is-trivial(d):

# Base case: The computation is in some way

#   trivial.

... d ...

else:

# Recursive case: Transform the data d to generate

#   new problems.

combiner(

...d...,

problem-solver(transform(d)),

...)

end

end



When you write a function with generative 

recursion you need to be careful about 

termination – how do you know you’ll ever 

reach the base case?



Fractals





“A fractal is a way of seeing infinity.”

Benoit Mandelbrot













Useful for motion capture 
suits, even if you are not “Far 

From Home.” 
See:

https://patents.google.com/p
atent/US20130016876

https://patents.google.com/patent/US20130016876
https://patents.google.com/patent/US20130016876


Design a function that consumes a number and 

produces a Sierpiński triangle of that size:

Start with an equilateral triangle with side length s:

Inside that triangle are three more Sierpiński triangles:

And inside of each of those … and so on.

Producing something that looks like this:



s

s/2



[See class code]



How do we know that this function won’t run 

forever?

Three-part termination argument:

Base case: s <= CUTOFF

Reduction step: s / 2

Argument that repeated application of reduction step will 

eventually reach the base case:

As long as the cutoff is > 0 and s starts >= 0, repeated 

division by 2 will eventually be less than the cutoff.



Design a function s-carpet to produce a 

Sierpiński carpet of size s:



Design a function s-carpet to produce a 

Sierpiński carpet of size s:

There are eight copies of the 

recursive call positioned around a 

blank square



[See class code]



How do we know that this function won’t run 

forever?

Three-part termination argument:

Base case: s <= CUTOFF

Reduction step: s / 3

Argument that repeated application of reduction step will 

eventually reach the base case:

As long as the cutoff is > 0 and s starts >= 0, repeated 

division by 3 will eventually be less than the cutoff.



Animation



Class code:
tinyurl.com/101-2023-02-27

https://tinyurl.com/101-2023-02-27
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