Generating Fractals

27 February 2023
Where are we?
data **List**:
| empty
| link(first :: Any, rest :: List)
end

fun **list-fun**(lst :: List) -> ...:
cases (List) lst:
 | empty => ...
 | link(f, r) => ... f list-fun(r) ...
end
end
The same idea holds for lists, binary trees, trinary trees, n-ary trees, and all kinds of other recursive data types: *The structure of the function follows the structure of the data.*
The recursive functions we’ve written have used *structural* (or *natural*) recursion.

In structural recursion, each recursive call takes some sub-piece of the data.

 Going through a list, we keep taking the **rest** of the list.
 Going through a tree, we keep looking at the sub-trees.
Generative recursion
In *generative recursion*, the recursive cases are generated based on the problem to be solved.

Generative recursion can be harder because neither the base nor recursive cases follow from a data definition.
Fun `problem-solver(d) -> ...:`
 if is-trivial(d):
 # Base case: The computation is in some way trivial.
 ... d ...
 else:
 # Recursive case: Transform the data d to generate new problems.
 combiner(
 ...d...,
 problem-solver(transform(d)),
 ...)
 end
end
When you write a function with generative recursion you need to be careful about *termination* – how do you know you’ll ever reach the base case?
Fractals
“A fractal is a way of seeing infinity.”

Benoit Mandelbrot
Useful for motion capture suits, even if you are not “Far From Home.”
See:
https://patents.google.com/patent/US20130016876
Design a function that consumes a number and produces a *Sierpiński triangle* of that size:

Start with an equilateral triangle with side length s:

![Equilateral triangle](image)

Inside that triangle are three more Sierpiński triangles:

![Three smaller triangles](image)

And inside of each of those … and so on.

Producing something that looks like this:
[See class code]
How do we know that this function won’t run forever?

Three-part termination argument:

Base case: $s \leq \text{CUTOFF}$

Reduction step: $s / 2$

Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is > 0 and s starts ≥ 0, repeated division by 2 will eventually be less than the cutoff.
Design a function s-carpet to produce a Sierpiński carpet of size s:
Design a function s-carpet to produce a Sierpiński carpet of size s:

There are eight copies of the recursive call positioned around a blank square.
[See class code]
How do we know that this function won’t run forever?

Three-part termination argument:

Base case: $s \leq \text{CUTOFF}$

Reduction step: $s/3$

Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is > 0 and s starts ≥ 0, repeated division by 3 will eventually be less than the cutoff.
Animation
Class code:
tinyurl.com/101-2023-02-27
Acknowledgments

This lecture incorporates material from:

Gregor Kiczales, University of British Columbia
Marc Smith, Vassar College