
1

1

CS102
Introduction to

data structures, algorithms, and
object-oriented programming

DAY 4

2

 Strings
Strings are sequences of characters. Methods we will use on
Strings include length, toUpperCase, charAt, indexOf, substring
(look these up in the Java API):

"abcdefg".length() returns 7

"tomorrow".toUpperCase() returns "TOMORROW"

String petString = "cats and dogs"; // creating a new string object

petString.charAt(6) returns 'n'

petString.indexOf('o') returns 10

petString.indexOf('X') returns -1

 if Decision Statement – Eck 3.5

3

1.  if …else: “either-or” type statement, each with its own
block of code.

2.  if alone with a block of code, only runs block if the
expression is true, otherwise skips block.

3.  if, else if, else if, …, else. Multi-way decision

statement, each part with its own block of code.

4.  ?: Short form of if…else (either or)

if and else are like cond in Racket. Only one clause in the
group is executed and the rest are ignored. The else at the
end is like that in the cond, a default condition.

4

if elseBlock 1 Block 2

5

String line= javax.swing.JOptionPane.showInputDialog
 ("Please enter a line of text: ");
int count = line.length();
if (count > 1){
 System.out.println("Your input contains "+

 count+" letters.\n");
}
else {
 System.out.println("Your input contains "+
 count+" letter. \n");
}

 if Decision Statement

6

String line= javax.swing.JOptionPane.showInputDialog
 ("Please enter a line of text: ");
int count = line.length();
System.out.println("Your input contains "+count+
 ((count>1) ? " letters.\n": " letter. \n"));

?: operator—alternative to if else

This code snippet first reads a line of text from the user and
then prints the result. Either "letters" or "letter" is
embedded in the String that is printed.

2

7

break, continue, and return
Java provides a general method for breaking out of the middle of
any loop. It's called the break statement, which takes the form

 break;

If you use a break statement inside a nested loop, it will only break
out of innermost loop that contains the break, not out of the loop
that contains the nested loop.

A continue statement tells the computer to skip the rest of the
current iteration of the loop. However, instead of jumping out of the
loop altogether, it jumps back to the beginning of the loop and
continues with the next iteration.

A return statement exits the method and returns control to the line
in which the method was called.

8

break
One place a break is used is in a while loop that expects a certain
type of input:

int i = 0;
java.util.Scanner sc = new java.util.Scanner(System.in);
while (true) {
 System.out.println("Please enter a positive whole number");
 i = sc.nextInt();
 if (i > 0) {
 break; // correct input entered, go to line after
 // end of while loop
 }
 // incorrect input entered, ask user for input again
 // by returning to the top of the while loop.
 System.out.println(“Input must be positive.);
} // end of while loop

This loop will continue until the user enters a whole number greater
than 0.

9

continue
This statement can be used in a loop to skip subsequent lines in
loop and go back to the start of the loop:

int i = 0;
int sumEven = 0;
int count = 0;
java.util.Scanner sc = new java.util.Scanner(System.in);
while (true) {
 System.out.println("Please enter 5 positive whole numbers");
 System.out.println("and I will add the even numbers.");
 i = sc.nextInt();
 if (i < 0) {
 System.out.println(“Oops, that was a negative number.”);
 continue; // skip lines below if and go back to top of while
 }
 sumEven = sumEven + i; // i must be positive
 count++;
 if (count == 5) {
 break; // need a way to break out of loop
 }
}
System.out.println("The sum of the even numbers is "+ sumEven);

10

Variations of the for loop § 3.4.1
Give three variations of for loops
to print all the odd numbers
between 1 and 21 :

for (int i = 1; i <=21; i+=2) {
 System.out.println(i);
} // end for

for (int j = 1; j <= 21; j++) {
 if (j % 2 ==1) {
 System.out.println(j);
 } // end if
} // end for

for (int k=0; k<=10; k = k+1) {
 System.out.println(2*k + 1);
} // end for

/** Use a for loop to count 1, 3, ..., 21
 */

/** Use a for loop to count 1... 21, but
 * only print the numbers that are odd
 */

 /** Use a for loop to count k=1...10 and
 * and print the numbers 2k + 1.
 */

for loops can also count down instead of up.

11

Enhanced for loop (foreach loops)
class EnhancedForDemo {

 public static void main(String[] args){

 int[] numbers = {1,2,3,4,5,6,7,8,9,10};
 int sum = 0

 for (int item : numbers) {
 sum+= item;
 System.out.println("Sum is: " + sum);
 }
 }
}

foreach loops can be used on any collection of data.

12

Nested For Loops § 3.4.3
Control structures can contain other control structures. In particular,
for loops are often nested.

for (int rowNumber = 1; rowNumber <= 12; rowNumber++) {
 // for each row, process all columns
 for (int N = 1; N <= 12; N++) {
 System.out.printf("%4d", N * rowNumber);
 // print ints in 4-character columns; No newline
 }
 System.out.println(); // Add a newline
}

3

13

Nested loops
String str; // Line of text entered by the user.
int count; // Number of different letters found in str.
char letter; // A letter of the alphabet.
java.util.Scanner scan = new java.util.Scanner(System.in);

System.out.println("Please type in a line of text.");
str = scan.nextLine(); // call to nextLine method in Scanner class
str = str.toUpperCase(); // call on non-static method in object str
count = 0; // initialize count
System.out.println("Your input contains the following letters:");
System.out.println();

for (letter = 'A'; letter <= 'Z'; letter++)
{
 for (int i = 0; i < str.length(); i++) {
 if (letter == str.charAt(i)) {
 System.out.print(letter);
 System.out.print(' ');
 count++;
 break;
 }
 }
}

14

switch
A switch statement allows you to test the value of
an expression x and to jump directly to some
location within the switch statement, depending on
the value of x.

The value of the expression listed in parentheses
immediately to the right of the word switch can be
one of the primitive integer types int, short, or
byte. It can also be the primitive char type or it
can be a String.

The expression cannot be a double or float value,
nor can it be of object (reference) type.

15

switch example
switch (N) {// (Assume N is an integer variable or exp.)
 case 1: // if N == 1
 System.out.println("The number is 1.");
 break;
 case 2:
 case 4:
 case 8: // if N = 2, 4, or 8
 System.out.println("The number is 2, 4, or 8.");
 System.out.println("(That's a power of 2!)");
 break;
 case 3:
 case 6:
 case 9: // if N = 3, 6, or 9
 System.out.println("The number is 3, 6, or 9.");
 System.out.println("(That's a multiple of 3!)");
 break;
 case 5: // if N = 5
 System.out.println("The number is 5.");
 break;
 default:
 System.out.println("The number is 7 or is outside the");
 System.out.println(" range 1 to 9.");
} 16

A data structure in which the items are arranged as a
numbered sequence, so that each individual item can be
referred to by its position number.

All the items in an array must be of the same type, and the
numbering always starts at zero. An array is a list of
variables, each accessible by the array name and position
number of the variable.

An array is an object, so the process of creating one requires
an instantiation with the keyword new.

arrays § 3.8

17

An array can be of any type and must first be declared:

 String[] name; // declaration of String array
 int[] age; // declaration of int array
 boolean[] leftHanded; // declaration of boolean array

Then the array must be instantiated:

 name = new String[1000]; // each with initial value null
 age = new int[5]; // each with initial value 0
 leftHanded = new boolean[100]; // each is false initially

After instantiation, the specified number of boxes will be
created in memory and reserved for that type.

arrays (cont.)

18

To put values into the array, you use the array name and
position number to store a value at that position:
 name[5] = "Penny";

The length of a array is stored with the array as a field name
accessible as, for example name.length // notice these are
 age.length // not method calls

Having access to the length of every array allows them to be
easily used with a for loop to go through each element:

// this for loop prints out all the elements in array called age
for (int i = 0; i < age.length; i++) {
 System.out.println(age[i]);
} // end for

arrays (cont.)

4

19

2-dimensional arrays § 3.8.5

Declaration and instantiation example:

 int[][] matrix; // declaration
 matrix = new matrix[10][5]; // instantiation

This line would create a matrix with 10 rows and 5 columns,
initially all 0's.

Often initialized or printed in nested for loops.

20

random numbers

The random method is a static member of the Math
class. The call Math.random() produces a double
between 0.0 and 1.0, inclusive. To use the
Math.random() function to get a number between 1 and
10, you would use the following call:

 int rNum = (int)(Math.random() * 10) + 1

The (int) operator truncates the real number to produce an int.

This type of operator is called a “cast”.

Type Conversion

•  Changing a datum from one type into another.

•  Explicit Conversion: Programmer uses a cast
operation to perform the type conversion.

•  Implicit Conversion: Compiler automatically
inserts code to perform the type conversion.

Cast

(<Data Type>) <Expression>

Expression of Old Type New Type Specifier

Expression of New Type

Cast Example

(int) Math.round(avgX)

Expression of type long.Type int specifier

Expression of type int.

Implicit Conversion from Narrow Types
to Wider Types

byte

short

int
long

float

double

5

 Algorithms – Eck 3.2

25

Step-by-step description of how to solve a problem.

Each line of human language must be broken down into
a language solvable by a computer.

Developing a program from a human language form
involves what is called stepwise refinement. That is, re-
write each line into a form called pseudocode and then
write it in a computer language.

26

Debugging Logical Errors
The hardest part of testing is to find bugs -- semantic
errors that show up as incorrect behavior rather than as
compilation errors.

Most programming environments come with a
debugger, which is a program that can help you
find errors by giving the value of different variables
at a particular line in the code.

A more traditional approach to debugging is to
insert debugging statements into your program.
These are output statements that print out
information about the state of the program.

