Algorithm Efficiency and Sorting

Measuring the Efficiency of Algorithms
- Analysis of algorithms
 - contrasts the efficiency of different methods of solution
- A comparison of algorithms
 - Should focus on significant differences in efficiency
 - Should not consider reductions in computing costs due to clever coding tricks

The Execution Time of Algorithms
- Counting an algorithm’s operations is a way to access its efficiency
 - An algorithm’s execution time is related to the number of operations it requires

Algorithm Growth Rates
- An algorithm’s time requirements can be measured as a function of the input size
- Algorithm efficiency is typically a concern for large data sets only

Algorithm Growth Rates
- Definition of the order of an algorithm
 - Algorithm A is order \(f(n) \) – denoted \(O(f(n)) \) – if constants \(k \) and \(n_0 \) exist such that \(A \) requires no more than \(k \times f(n) \) time units to solve a problem of size \(n \geq n_0 \)
- Big O notation
 - A notation that uses the capital letter \(O \) to specify an algorithm’s order of growth
 - Example: \(O(f(n)) \)
Order-of-Magnitude Analysis and Big O Notation

- Order of growth of some common functions
 \(O(1) < O(\log_2 n) < O(n) < O(n \log_2 n) < O(n^2) < O(n^3) < O(2^n) \)

- Properties of growth-rate functions
 - You can ignore low-order terms
 - You can ignore a multiplicative constant in the high-order term
 - \(O(f(n)) + O(g(n)) = O(f(n) + g(n)) \)

Order-of-Magnitude Analysis and Big O Notation

- Worst-case analyses
 - An algorithm can require different times to solve different problems of the same size
 - Worst-case analysis
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size \(n \)

The Efficiency of Searching Algorithms

- Sequential search
 - Strategy
 - Look at each item in the data collection in turn, beginning with the first one
 - Stop when
 - You find the desired item
 - You reach the end of the data collection

The Efficiency of Searching Algorithms

- Binary search
 - Strategy
 - To search a sorted array for a particular item
 - Repeatedly divide the array in half
 - Determine which half the item must be in, if it is indeed present, and discard the other half
 - Efficiency
 - Worst case: \(O(\log_2 n) \)

The Efficiency of Searching Algorithms

- Sequential search
 - Efficiency
 - Worst case: \(O(n) \)
 - Average case: \(O(n) \)
 - Best case: \(O(1) \)

The Efficiency of Searching Algorithms

A comparison of growth-rate functions: b) in graphical form
Sorting Algorithms and Their Efficiency

- **Sorting**
 - A process that organizes a collection of data into either ascending or descending order

- **Categories of sorting algorithms**
 - An internal sort
 - Requires that the collection of data fit entirely in the computer’s main memory. Called in-place if it uses space proportional to data size
 - An external sort
 - The collection of data will not fit in the computer’s main memory all at once but must reside in secondary storage

Selection Sort

- **Selection sort**
 - **Strategy**
 - Select the largest item and put it in its correct place
 - Select the next largest item and put it in its correct place, etc.

 Shadow elements are selected; solid elements are in order.

 Initial array: 29 10 14 37 13
 After 1st swap: 29 10 14 37
 After 2nd swap: 13 10 14 29 37
 After 3rd swap: 13 10 14 29 37
 After 4th swap: 10 13 14 29 37

A selection sort of an array of five integers

Selection Sort

- **Analysis**
 - Selection sort is O(n^2)

- **Advantage of selection sort**
 - The running time does not depend on the initial arrangement of the data (worst case running time is same as best case running time on all data sets)

- **Disadvantage of selection sort**
 - It is only appropriate for small n

Bubble Sort

- **Bubble sort**
 - **Strategy**
 - Compare adjacent elements and exchange them if they are out of order
 - Comparing the first two elements, the second and third elements, and so on, will move the largest elements to the end of the array
 - Repeating this process will eventually sort the array into ascending order

Initial array: 29 10 14 37 13
After 1st pass: 10 29 14 37 13
After 2nd pass: 10 14 29 13 37
After 3rd pass: 10 14 13 29 37
After 4th pass: 10 14 13 29 37

The first two passes of a bubble sort of an array of five integers: a) pass 1; b) pass 2
Bubble Sort

- Analysis
 - Worst case: \(O(n^2) \)
 - Best case: \(O(n) \)

Insertion Sort

- Insertion sort
 - Strategy
 - Partition the array into two regions: sorted and unsorted
 - Take each item from the unsorted region and insert it into its correct order in the sorted region

An insertion sort partitions the array into two regions

Insertion Sort

- Analysis
 - Worst case: \(O(n^2) \)
 - Best case: \(O(n) \)
 - Worst case: \(O(n^2) \)
 - Best case: \(O(n) \)
 - For small arrays
 - Insertion sort is appropriate due to its simplicity
 - For large arrays
 - Insertion sort is prohibitively inefficient

Mergesort

- Important divide-and-conquer sorting algorithms
 - Mergesort
 - Quicksort

Mergesort

- A recursive sorting algorithm
 - Gives the same performance, regardless of the initial order of the array items
 - Strategy
 - Divide an array into halves
 - Sort each half
 - Merge the sorted halves into one sorted array

A mergesort with an auxiliary temporary array
Mergesort
- Analysis
 - Worst case: \(O(n \log n)\)
 - Average case: \(O(n \log n)\)
- Advantage
 - It is an extremely efficient algorithm with respect to time
- Drawback
 - It requires a second array as large as the original array

Quicksort
- A divide-and-conquer algorithm
- Strategy
 - Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
 - Sort the left section
 - Sort the right section

Invariant for the partition algorithm
- The items in region \(S_1\) are all less than the pivot, and those in \(S_2\) are all greater than or equal to the pivot
QuickSort

- **Analysis**
 - *quickSort* is usually extremely fast in practice
 - Even if the worst case occurs, *quickSort*'s performance is acceptable for moderately large arrays

Radix Sort

- **Radix sort**
 - Treats each data element as a character string
 - **Strategy**
 - Repeatedly organize the data into groups according to the i\(^{th}\) character in each element
 - **Analysis**
 - Radix sort is O(n)

Radix Sort

A radix sort of eight integers

A Comparison of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst case</th>
<th>Average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Mergesort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Quicksort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Radix sort</td>
<td>n</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
</tbody>
</table>

Approximate growth rates of time required for eight sorting algorithms

Summary

- Worst-case and average-case analyses
 - Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given size
 - Average-case analysis considers the expected amount of work an algorithm requires on a problem of a given size
- Order-of-magnitude (aka asymptotic) analysis can be used to choose an implementation for an abstract data type
- Selection sort, bubble sort, and insertion sort are all $O(n^2)$ algorithms
- Quicksort and mergesort are two very efficient sorting algorithms ($O(n \log n)$)