
3/6/17

1

Review

Spring 2017
CS 102

2

Software

n  Operating System: the program that manages a
computer's resources

n  Program: a sequence of instructions that performs
some task
n  Performing an instruction is called “executing” an

instruction

3

Compilation

n  Translator:
n  translates a program from one language to another.

n  Machine language:
n  the ones and zeros that a computer understands.
n  A low level language.

n  Compiler: The translation software invoked at compile time
n  a translator which typically translates a high-level language into a

low-level one
n  Java is a high-level language
n  Java’s compiler translates Java code into bytecode
n  Bytecode is like machine language, but is not tied to a specific

machine
n  A Java bytecode interpreter is used to execute the bytecode

n  Called a Java Virtual Machine (JVM) is the software invoked at
runtime.

4

Terminology

n  Abstraction
n  Taking away the complexity of a problem by representation with

simpler classes. We "abstract away" from the complexity with a
simpler representation.

n  Encapsulation or Information Hiding
n  Not revealing how the method does it’s work. Data members

are private; accessor and mutator methods (if they exist) are
public.

n  Modularity

n  Dividing code into smaller pieces (modules), each one of which
is easier to code.

5

OOP Terminology

n  OOP (Object-Oriented Programming) languages:
n  Encapsulate code inside the class’ methods
n  Use additional methods for modularity

n  A (primitive) type is the basic unit of storage in Java

n  A type is a template for a variable

n  A class is composed of types (or other classes) as well as
methods
n  A class is a template for an object

n  All variables must have their type declared before they are

used. Creating an object from a class is called instantiating
the object, using the new keyword.

6

Problem solving steps

n  Analysis
n  What needs to be done?

n  Design
n  How is it going to be done?

n  Implementation
n  Solution to problem with correct inputs.

n  Testing
n  Does it work correctly?

3/6/17

2

7

Readable programs

n  Comments are English text
n  Single lines have a // before them in a Java file
n  /* */ or /** */ are multiline comments

n  Very long lines should be broken into smaller ones.
n  Blank lines make a program easier to read
n  Indentation helps humans identify which code is

within {}'s
n  Keywords have special meanings in Java; can’t be

used for identifier names
n  Examples: int, double, class, static, public

8

Identifiers

n  Identifiers: programmer-defined names
n  For classes, variables, methods, etc.
n  Cannot be a keyword
n  Must start with a letter (or _ or $)
n  Can contain numbers also (but not as the first character)

n  Good identifiers: radius, width, position

n  Bad identifiers: x, y, q,
the_really_really_long_variable_name_hi_mom
Identifiers like susan and edward for numbers. Names
should reflect variable purpose

9

Computer bugs

n  A bug is an error in the program, at compile time
or runtime

n  To debug is to remove bugs (errors)

10

Java classes

n  The class keyword is used to start a class
declaration
n  Can be made public
n  Classes start with "public class ClassName"

n  Purpose of classes:
1.  A class can be a library of static methods

2.  A class can be a “template” for objects

n  Just as a type is a “template” for a variable

inheritance ê keywords

11

Java methods

n  All methods have the following syntax:

 modifers type name (parameter declarations) { statements }

Modifiers
to the

method

Type
that it
returns

A name
for the
method

The body of
the method

(can be empty)

public static void main (String[] args) { ... }

Any number
(including zero)

of parameter
types and names

12

Program execution

n  Java starts executing a program at the beginning
of the main() method

n  Braces { } are used to specify where a method
begins and ends

n  A statement ends when a semicolon is encountered
n  A statement can span multiple lines

3/6/17

3

13

Misc Information

n  A literal character string is a sequence of characters enclosed by
double quotes

n  System is the Java class that allows you to access parts of the
computer system
n  System.in: access to the keyboard
n  System.out: access to the monitor

n  Period is used for selection: Math.round

n  Given String s, select a method via: s.substring()

n  An exception is when Java “panics”
n  It means something is wrong during run time

14

Escape sequences

n  Java provides escape sequences for printing special
characters

n  \n newline
n  \t tab
n  \\ backslash
n  \" double quote
n  \‘ single quote

15

Primitive variable types

n  Java has 8 (or so) primitive types:
n  float
n  double
n  boolean
n  char
n  byte
n  short
n  int
n  long

real numbers

integer numbers

two values: true and false
a single character inside 's

16

Constant names vs. literal values

n  Which is easier to enter:
n  Math.PI
n  3.141592653589793

n  Entering a constant reduces chances of errors

n  It allows for easily finding and changing the
constant later on

n  Constants are usually declared final so changes
can't be made in a program

17

References and variables

n  A primitive variable is an actual spot in memory
that holds a (primitive type) value

n  A variable reference is a memory address that
points to another spot in memory where the object
is stored.

n  Variables defined in a class but outside a method
are initialized to a default value (global to class)

n  Variables defined in a method are not initialized to
a default value (local to the method)

18

Math

n  Standard operators: + - * /
n  Note that / can be either integer division or

floating-point division
n  % computes the remainder (aka modulus)
n  Can provide numbers in decimal or scientific

notation

3/6/17

4

19

Expressions

n  Evaluating an expression yields a result and a type
n  Example: 4/3 yields 1 of type int
n  Example: 3.5*2.0 yields 7.0 of type double

n  Binary operator has two operands

n  Example: 3+4, 6*3, etc.
n  Left one is evaluated first

n  Unary operator has one operand

n  Example: -3, etc.

n  Operators have precedence
n  For example, * and / are evaluated before + and -

20

Operators

n  Assignment: = pronounced ("gets")
n  Increment (++) and decrement (--)
n  Consider:

int i = 5; int i = 5;

System.out.println (i++); System.out.println (++i);

System.out.println (i); System.out.println (i);

n  There are 4 ways to add 1 to an int:
i = i + 1;

i += 1;

i++;

++i; compound operators

21

Casting

n  Casting converts one type to another
n  Example:

int x = 1;

System.out.println ((double) x);

double d = 3.4;

System.out.println ((int) d);

22

Scanner class

n  Creating one:
Scanner stdin = new Scanner (System.in)

n  Methods:
n  public int nextInt()
n  public short nextShort()
n  public long nextLong()
n  public double nextDouble()
n  public float nextFloat()
n  public String next()
n  public String nextLine()
n  public boolean hasNext()

23

References

n  An object variable is really a reference to that object
n  null represents an object variable that points to nothing

n  Once there is no pointer to an object, Java automatically
deletes that object
n  Called garbage collection

n  A final object variable:
n  Only the reference (where it points in memory) is final

n  The values in the object can change via member methods

n  We use constructors to create objects

24

Strings

n  A String is a sequence of characters
n  The + operator concatenates two Strings
n  The += operator appends a String
n  First character has index 0
n  A String can never be modified once created!

3/6/17

5

25

String methods

n  length()
n  substring()
n  indexOf()
n  lastIndexOf()
n  charAt()
n  trim()
n  valueOf()

26

Logical expressions

n  Logical expression has value either true or false

n  Java has the boolean type with values true or false

27

Logical operators

n  Three primary logical operators: and (&&), or (||), not (!)
n  An && operation is only true when both parts are true
n  An || operation is true when either (or both) parts are true
n  A ! operation negates the value of the expression
n  ! operator is unary
n  If the first boolean expression in an && statement is false (or

if the first boolean expression in an || is true), then the rest
of the expression is skipped. This is called short circuiting:

 if ((x > 0) && (3 / x == 1)) //the second part is not executed if the first part returns false

28

Equality

n  Two equality operators: == and !=

n  When comparing objects, == compares the
references, not the objects themselves

n  Use the .equals() method to test for object equality

29

Ordering

n  Relational operators: ==, !=, <, >, <=, and >=.
These only work on primitive types!

n  Relational operators include the equality operators
and the ordering operators

n  For characters, ordering is based on the Unicode
numbers of the characters

30

If statements

n  An if statement has the form: if (expression) action

n  An if-else statement has the form: if (expression)
action1 else action2

n  An if-else-if statement is used when there are
many tasks to do, depending on the logical
expressions

3/6/17

6

31

Switches

n  A switch statement can be more readable than an
if-else-if block

n  Should always put either break at the end of each
case of a switch, or a comment such as

 // FALLING THRU

n  The default case means any case not matched by

any of the previous cases

32

Exceptions

n  try...catch blocks can be used to keep your code from
crashing during execution.

For example, you could put a try block around code that
could cause an exception:

 int[] arr = new int[9];
 try {
 for (int i = 0; i <= arr.length; i++) {
 System.out.println(arr[i]);
 }
 } catch (???) { } // exception generated in for loop?

33

Generating random numbers

n  (int)(Math.random() * 12) + 1;

n  The (int) in the expression above is called a cast

operation. It is needed because the random
method returns a double. A cast from double to int
truncates the part to the right of the decimal.

n  The random method at the top of this slide is
static...how do we know this without looking in the
java api?

