CMPU 102 Assignment 1: Collatz sequence
Due on Thursday, February 9th, by midnight.

Problem Specification:
For this assignment, you will write a program to compute the Collatz Sequence. The algorithm for this program is shown below.

1. Prompt for and read any positive integer n from user.
2. While (n>1)

3. Ifniseven, setn=n/2.

4 Ifnis odd, setn=3n+ 1.

5. Display the Collatz sequence for the given number n.

In 1937, Lothar Collatz proposed that no matter what number you begin with, the sequence eventually reaches 1. This is widely
believed to be true, but has never been formally proved.

Write a program that reads a positive whole number n (a natural number) from the user and then displays the Collatz Sequence
starting at n. Stop when n reaches 1.

You are expected to write this code on your own. Do not copy from the internet or other sources.

Part 1

To get started, create a new folder called walter-assignl (with your last name first, not mine). For example, if your name is
Jill Tracy, call the folder tracy-assignl. Then download the starter file Collatz.java from the course web page into the directory
you just created.

Code Specifications:

Open the Collatz.java program in DrJava. This program is incomplete, but it should run with no errors. Try running it to ensure
it has no errors.

START CODING BY TYPING YOUR NAME AT THE TOP OF THE FILE.

The main method should prompt for and read a positive integer (> 1) from the user. Choose between System.out and JOption-
Pane built-in classes to prompt the user and either Scanner or JOptionPane to read the number.

A method called getCollatzSequence is already present in the starter file, but it does not function properly. Read on for instruc-
tions on how to code this method so that it implements the algorithm given at the top of this page.

The execution of your program should have output that looks like examples I-1 through I-4, in which the user input is shown in
boldface type:

Example I-1: Running the program with input of 1.
Please enter a whole number greater than or equal to 1 and I will generate and

display all the numbers in the Collatz sequence: 1

The Collatz sequence for starting number 1 is:
1



Example I-2: Running the program with input of 6.
Please enter a whole number greater than or equal to 1 and I will generate and

display all the numbers in the Collatz sequence: 6

The Collatz sequence for starting number 6 is:
6 310516 8 4 21

Example I-3: Running the program with input of 5.
Please enter a whole number greater than or equal to 1 and I will generate and

display all the numbers in the Collatz sequence: §

The Collatz sequence for starting number 5 is:
516 8 421

Example I-4: Running the program with input of 3.
Please enter a whole number greater than or equal to 1 and I will generate and

display all the numbers in the Collatz sequence: 3

The Collatz sequence for starting number 3 is:
3105168 4 21

Hint: Declare a String variable (e.g., st r) prior to a while loop. The string st r should initially contain the empty String. Each
time the loop iterates, concatenate each new number in the sequence with a space or two after each number.

Do not write all the code in the main method. Instead, call the method with signature:
public static String getCollatzSequence (int n)

from the main method. The getCollatzSequence method should implement the algorithm shown at the top of the page and
return the sequence to be printed in a String.

In Java, to determine if a number is even or odd, use the Modulus operator %. If x % 2 == 0, the number is even and if x % 2
== 1, the number is odd.

You should make sure (via testing) that your program works for all integers less than 10 before going on to Part 2.

Part 11

For this part, you should start with the code you already have written in the Collatz.java file, as specified above. Save the
Collatz.java file and then give it another name— CollatzExtra.java and be sure to change the class name inside the file to match
the file name. Modify the code from Collatz.java so that it tallies how many numbers are generated and reports the largest
number in the the output sequence. These changes require 2 more variables to use in the while loop, one to keep track of the
number of iterations and the other to hold the maximum value in each sequence. Your output for this part should look like that
shown in the examples below (user input is shown in bold face type):



Example II-1: Running the program with input of 6.

Please enter a whole number greater than or equal to 1 and I will generate and
display all the numbers in the Collatz sequence: 6

The Collatz sequence for starting number 6 is:
6 310516 8 4 21

Terminated after 9 steps.
The highest number in the sequence is 16.

Example II-2: Running the program with input of 11.
Please enter a whole number greater than or equal to 1 and I will generate and

display all the numbers in the Collatz sequence: 11

The Collatz sequence for starting number 11 is:
11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Terminated after 15 steps.
The highest number in the sequence is 52.

Example II-3: Running the program with input of 27.

Please enter a whole number greater than or equal to 1 and I will generate and
display all the numbers in the Collatz sequence: 27

The Collatz sequence for starting number 27 is:

27 82 41 124 62 31 94 47 142 71
214 107 322 161 484 242 121 364 182 91
274 137 412 206 103 310 155 466 233 700
350 175 526 263 790 395 1186 593 1780 890
445 1336 668 334 167 502 251 754 377 1132

566 283 850 425 1276 638 319 958 479 1438
719 2158 1079 3238 1619 4858 2429 7288 3644 1822
911 2734 1367 4102 2051 6154 3077 9232 46le 2308
1154 577 1732 866 433 1300 650 325 976 488

244 122 61 184 92 46 23 70 35 106
53 160 80 40 20 10 5 16 8 4
2 1

Terminated after 112 steps.
The highest number in the sequence is 9232.

Don’t worry about getting the sequence numbers to line up perfectly but they should be separated by at least one space.

IMPORTANT: Be sure to remove all code that is not used in the files and all comments that do not apply and make sure your
code is indented properly with no lines that are longer than 80 columns before you submit it.

When you are finished with this project, submit the zipped yourname-assignl folder on the CMPU102 Moodle page. If
compressing the file is problematic, submit the 2 java files separately. Any file with a after the name is a previous copy of the
algorithm. Do not submit any files with a after the name.



